
Time series prediction & generation from disentangled latent factors:
new opportunities for smart cities

Perrine Cribier-Delande1,2, Raphael Puget1, Camille Noûs3 Vincent Guigue2, Ludovic Denoyer2

Abstract— The acceleration of urbanisation has brought
many new challenges to cities around the world. Application
range is wide, from air pollution to public transportation
modelling. The availability of data pertaining to these issues has
been growing fast in the last years, offering many opportunities
to tackle those applications with machine learning algorithms.
We propose an elegant and general architecture that is able
to provide state of the art forecasting in several different
domains. Our idea is the following: for many time-series, a
number of factors, that often relate to the context they were
created in, can influence the observed values, such as day or
location. In this paper, we present a machine learning model
that learns to represent and disentangle such factors. Our
contribution is to provide an approach that works at different
scales: on a short term basis (30 minutes to few hours) our deep
neural network architecture delivers competitive forecasting
in a classical setting; at the day/week/month level, we show
that we can generate relevant time series associated with
unknown contexts. To the best of our knowledge, this ambitious
application has not been investigated until now.

I. INTRODUCTION

Environmental stakes and massive urbanisation have be-
come in the last few years some of the major challenges
large cities have to face. High pollution level, heavy traf-
fic congestion, public transportation optimization, energy
management are among the principal concerns of stack-
holders. Many cities have been forced to take policies to
restrict personal car usage in order to keep their air clean
of pollution, especially during some specific period of the
year (when the air is particularly dry for example). One
solution to make more efficient policies is to be able to
predict passengers flows and pollution levels for instance.
Data, associated with machine learning, can be the key to
develop efficient predictive algorithm. Thus, transportation
authorities are generalising automated fare collection (AFC)
via smart cards. Many cities have elaborated an open data
strategy and encourage research in data sciences. These new
tools can allow policy makers reduce pollution peaks, traffic
jams while optimising public transportation in the meantime.

Modelling users behaviours and training predictive algo-
rithms from various data sources require to combine different
research fields: representation learning to extract relevant
aspects associated with contextual factors [1] and time series
analysis to deliver proper forecastings. Statistical methods
such as ARIMA and Box-Jenkins [2] have been used with

1Renault, DEA-IR, Technocentre, 1 avenue du Golf 78084 Guyancourt ,
France

2MLIA, Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
3Laboratoire Cogitamus, http://www.cogitamus.fr/, France

great success in time series forecasting applications. How-
ever, they have shown some weaknesses when tackling large
amounts of non-linear data. In these cases, deep learning is
increasingly being used. As they are specifically designed to
handle sequences, Recurrent Neural Networks (RNN), and
especially LSTM and GRU, have been used extensively to
model time series [3], [4]. Their ability to keep both past
trend and recent changes in memory allows them to be
particularly suited to forecast series at multiple scales. In
parallel, deep learning is offering powerful tools to learn
representations of discrete concepts such as word in NLP [5],
users in recommender systems [6] and contextual factors of
time series [7].

Classical approaches in time series forecasting can roughly
be split into three main categories: short-term predictors,
often relying on historical tools [2], mid-term predictors
exploiting deep learning to extract automatically robust fea-
tures from a large period of time [8] and, finally, long-
term predictors that correspond mainly to seasonality [9],
[10]. Assuming this distribution, our contribution represents
a significant technological break: not only to we provide state
of the art forecasting at short and mid-term scales, but we
also redefine the task corresponding to long-term prediction
by turning it into a generative issue. Indeed, we propose a
deep learning architecture that is able to disentangle different
latent factors from a time series, for instance the location
and the day type (week day, Sunday, ...). Then our approach
is able to generate a new signal from any combination of
factors. As a consequence, we are able to generate the time
series corresponding to a Monday at place A even if place
A has never been observed on Monday in the past: we just
need to have learnt what the representation of location A is
and what the representation of a Monday is.

From the technical point of view, our contribution is a deep
learning model based on an encoder-decoder architecture.
The encoder component learns to disentangle the salient
features from time series that gave rise to them. In our
examples, there are two factors: time and location. However,
our approach can intrinsically deal with as many factors
as requested by an application. The decoder takes as input
a representation for each factor and, optionally, the past
values associated with the series to forecast. The strength
of our model is that it can both be used for predicting the
future but also to generate a time series corresponding to a
specific couple (location, day) even if it has not been seen
in the dataset. Thus, it is a powerful tool to deal with the
missing value issue. In an extreme setting, our approach may
even able to predict time series associated to a new factor,

observed only once.
After giving all details associated with our architecture, we

provide some experimental results demonstrating our ability
to perform state of the art forecasting as well as time series
generation in various contexts.

II. NOTATIONS AND TASKS

Our dataset X = {x1, . . . ,xn} consists in a set of n
univariate time series. In this article, we focus on time series
of fixed length T , even if our recurrent architecture works
on signals of arbitrary length without modifications. In the
training set, each signal xi ∈ RT is associated to a couple
of discrete spatio-temporal labels (s, t) (s ∈ [1..N] and
t ∈ [1..M]). In the following, we regularly denote xs,t the
series associated with this couple. The location s takes on
different meanings depending on the dataset. On the contrary,
for the temporal context t all datasets used in this article
operate on daily time-series described on a hourly basis
(leading to a constant value of T in every domain). The
observed series are indexed through a mask m such that
ms,t = 1 if xs,t is observed (and is in the training set), and
ms,t = 0 if xs,t is not observed1.

We tackle three distinct tasks in this article. The first one is
the generation of a time series matching specific spatial and
temporal context. These contexts are present in the training
set but not seen together in one example. As in recommender
systems, we seek to estimate missing values from spatial
and temporal contexts modelled by embeddings; but in our
setting, values are time-series. Our second task corresponds
to an extreme setting: generating a time series matching a
spatial or temporal context not present in the training set.
Continuing the analogy with recommender systems, it would
correspond to the cold start. These two tasks are represented
in figure 1. The third task is the classical forecasting setting.
In our architecture, it is a specific use of the generative
process combined with a recurrent neural network (RNN).
We start the generation process from a general context and
we refine the forecasting by adding ground truth values from
the past at the entry of the RNN.

Fig. 1. A representation of our two first tasks on a dataset represented
as matrices. White background means mi,j = 1. Dark blue is mi,j = 0
[Left] The first task, matrix completion [Right] The second task, addition
of new contexts

A. Transductive setting: a matrix completion approach

Our first task is to generate a time series for any (s, t)
couple. We can see our dataset X as an incomplete matrix

1Note that in the experimental section, this split will also include a
validation set for hyper-parameters tuning.

of spatial context by temporal context, each cell of the matrix
represents one time series of the dataset (Fig. 1, top). The cell
on the sth row and tth columns corresponds to xs,t. Our goal
is to generate this missing data, similarly to what is usually
done in matrix factorisation. This can be useful when this
matrix is sparse because data collection is expensive.

We introduce two matrices of learned embeddings de-
noted: Zs = {s1, . . . , sN} and Zt = {t1, . . . , tM} with s and
t being Z-dimensional vectors encoding respectively space
and time contexts2. To simplify notation in the following, we
denote s the embedding related to location s (instead of ss).

The embeddings are fed to a decoder dθ (parametrized by
a set of parameters θ) that learns to reconstruct the series
corresponding to these context. We choose a classical Mean
Square Error (MSE) metrics to train a decoding function dθ,
leading to the following cost over the n labelled training
samples:

LMSE =

n∑
i=1

‖xi − x̂i‖2,with: x̂i = dθ(s, t) (1)

where the ith sample is associated to the couple of factors
(s, t). This loss allows us to learn the two matrices of
embeddings and the decoder jointly (end-to-end).

B. Inductive setting: generating time-series from unseen
factors

In this second setting, s and t are no longer directly
optimised, they are encoded on the fly using an encoding
function eγ (parametrized by a set of parameters γ). In order
to generate all time series corresponding to a new location
s′ (respectively to a new day t′) from a single observation
xs′,t ∈ RT , we propose:

1) to compute the embedding (s′, t) = eγ(xs′,t)
2) to generate all series associated to s′:

∀t† ∈ {1, . . . ,M}, x̂s′,t† = dθ(s
′, t†)

Our cost function is still : LMSE =
∑n
i=1 ‖xi − x̂i‖2

however this time : x̂i = dθ(s, t) = dθ(eγ(xs,·), eγ(x·,t))
With respect to the previous example, we point out that s′ has
never been seen during the training step. The embedding s′

is obtained in the inference step by using the trained encoder
on a new signal.

C. Classical forecasting setting

For both tasks presented above, we assumed that no data
on the series to forecast are available. We now investigate the
more classical forecasting issue where the aim is to predict
future values with respect to past observations. This problem
corresponds to a specific use of the previous approach: we
still rely on dθ(s, t) to tackle the prediction task associated
with context factors (s, t), but we now assume that the
decoder d relies on a recurrent architecture. As explained in
detailed in the next section, such an architecture combines an

2Please note that embedding corresponding to each factor may have
different dimensions. We also remind that our architecture can deal with
as many factors as requested by the application.

input value with a latent representation encoding the whole
past of the sequence to generate a new latent representa-
tion from which a prediction can be made. Whereas our
generative approaches used the last prediction to feed the
network and obtain the next value estimation, the forecasting
architecture simply feed the network with ground truth values
from the past.

The training step (and the loss functions) are the same
as previously. The only difference resides in the way to
exploit the recurrent decoder d. Using past ground truth
values transforms the generative architecture into an efficient
forecasting one.

III. MODEL & LEARNING PROCEDURE

As explained above, our general architecture can rely
on different neural network implementations. The proper-
ties associated with a standard multilayer perceptron or a
recurrent model are different: we give some details about
the formulations to provide a better understanding of these
properties.

From a general point of view, the architecture is made
of a decoder that generates sequences from context factors
and, for the inductive approach only, an encoder that extracts
factor representations from a given time series. In theory,
we can combine any neural network for the encoder with
any other one for the decoder. In practice, we only consider
homogeneous architectures.

The subsection on MLP describes this particular approach
but it also gives the tricks associated with the inference
procedure. Those tricks are also used with the others archi-
tectures. The recurrent architecture is the only one able to
tackle the forecasting task; thus, the forecasting procedure is
given in this subsection.

A. Multi-Layer Perceptron

The most classical neural architecture is the MLP. The
idea is to map the input into a latent space and then to
map the latent representation h ∈ Rd to the output domain.
Mapping operations are often non linear: they combine an
affine transformation and a non-linear activation function.

a) Decoder: First, we concatenate the couple of context
embeddings s, t at the input: [s, t] ∈ R2Z . The intermediate
representation is obtained as follow: h = g1(W1 · [s, t])
with W1 ∈ R2Z×d and g1 an activation (e.g. a sigmoid
or RELU function). Estimating the time series from the
latent representation is done by: x̂s,t = g2(W2 · h), with
W2 ∈ Rd×T . As a consequence, we can only deal with fixed
length time series (T) and we are not able to implement the
forecasting framework with this approach. To sum up this
formulation and bridge with previous notations, in this case:

x̂s,t = dθ(s, t) = g2(W2 · g1(W1 · [s, t])), x̂s,t ∈ RT (2)

The training procedure relies on the back-propagation al-
gorithm which minimises the loss (1). This procedure op-
timises both the MLP parameters (θ = (W1,W2)) and the
embeddings (Zs, Zt). The decoding procedure is illustrated
in Fig. 2.

Fig. 2. Transductive model relying on discrete embeddings to generate a
time-series.

The nature of the activation function, the number of layers,
and their dimension was optimised through the validation set
and depends on the dataset.

b) Encoder: To tackle the inductive setting and being
able to predict time series associated with a context never
seen during the training step, we need to optimise an encoder
function that can extract representations s, t from a signal
xs,t. We rely on the same MLP architecture as above, except
that we have to define an encoder per factor. For the spatial
factor, the encoder is:

s = eγ,s(xs,t) = g3(W3,s · g4(W4,s · xs,t)), s ∈ RZ (3)

The symmetric function eγ,t relying on (W3,t,W4,t) is
defined and optimised in parallel.

Once again, the MLP consider the time series as a block
and we are limited to fixed length sequences. The learning
procedure is end-to-end, namely starting from a signal, we
optimise our capacity to reconstruct it by encoding and
decoding it. In this process, the encoding parameters γ =
(W3,W4) and the decoding parameters θ are optimised at
the same time.

c) Enforcing disentanglement: Taking a closer look
at this architecture reveals a clear weakness: in the auto-
encoding procedure, the MLPs are going to use s and t
indistinctly to encode the information contained in the signal.
Even if the recurrent patterns associated to each factor will
be separated, we are probably going to mix up lower energy
phenomena.

During the learning step, the paradigm used to enforce
disentanglement is described in Fig. 3. The idea is to encode
a pair of sequences: one containing the location factor s
and the other the time factor t. Then, we are going to
reconstruct a third time series corresponding to the pair
(s, t). This particular procedure enables us to ensure a better
disentangling of the context factors. To sum up the learning
step, we perform a stochastic gradient descent based on the
sampling of sequence triplets:

1) xs,t′ and xs′,t are encoded using eγ , leading to four
representations s, s′, t, t′.

2) Only s, t are used in dθ to build x̂s,t.
3) The loss Ls,t = ‖xs,t − x̂s,t‖2 enables us to optimise

γ, θ, s and t.
d) Inference on unseen factors: One important thing

to notice is that there is no guarantee as to the unity of the
representation s. Indeed, it is not mandatory that our function
eγ would lead to the same representation for each example
corresponding to a context. That is why, during inference,
we must choose how to represent the "known" context. For

Fig. 3. Inductive model learning a continuous encoder & enforcing
disentanglement between context factors.

example, if the new example is xs?,t where s? is unknown,
we aim at predicting the behaviour of this location for every
existing timestamp existing in the learning set. In particular,
we are going to estimate x̂s?,t1 ... But how are we supposed
to choose the latent representation t1 associated with xs1,t1
or xs2,t1 ?

We investigate two options to tackle this issue. For sake
of clarity, we focus on a new location s? and on a particular
timestamp t1, the aim being to estimate x̂s?,t1 . Obviously,
we can also work with new timestamps.
• Embedding averaging: We wish to obtain a unique

representation t1. Given T the set of sequences
corresponding to the targeted factor t1. We com-
pute the average of the encoded embeddings: t̄1 =
1
|T |

∑
i∈T eγ,t(xi) and we estimate a new series as:

x̂s?,t1 = dθ(eγ,s(xs?,t), t̄1)
• Series averaging: With this method, we compute an

estimated time series associated with every factors ex-
tracted from the training set. The resulting time-series
is computed by averaging all theses series: x̂s?,t1 =
1
|T |

∑
i∈T dθ(eγ,s(xs?,t), eγ,t(xi))

B. Convolutional Neural Network (CNN)

CNN architectures learn d filters fi to extract local features
from sequences. The weight of the filter fi is denoted wi.
Each filter is convoluted with the input, resulting on d feature
maps. An activation function g is then applied to these feature
maps. So for an input x, the output of one CNN layer can
be written as: h = [∀i g(x?wi)] where ? is the operator for
1-dimension convolution.

The resulting feature maps can then be used as input for
the next layer. Our encoding framework relies on a single
layer in this article.

It appears that no pooling operations are performed on the
temporal: as a consequence intermediate representations have
a proportional dimension to the input. As for the MLP, we
are limited to fixed length sequences with this architecture
and we can not tackle the forecasting task.

Decoding operations are symmetric to the encoding ones:
we learn filters that associate each coefficient with a local
partial reconstruction of the sequence. This process enables
us to reconstruct an estimate signal from [s, t].

C. Recurrent Neural Networks (RNN) & Forecasting

To be able to perform forecasting step by step, we used a
RNN architecture. RNN are called recurrent because of their
ability to remember the past by maintaining a continuous
internal state. This internal state is modified with each new

input to add this new information while keeping memory of
the past one. A RNN cell takes as input the last internal state
ha−1

3 and the new input xa, and outputs the new internal
state ha. Depending on the type of RNN used, ha can be
computed using several functions. The simplest one is: ha =
g(W · [ha−1, xa]) where g is the activation function and W
are the parameters to learn.

a) Decoder & Forecasting: The RNN architecture is
intrinsically a forecasting operator. Parameters are learnt so
as to predict the next value of the series: xa+1 = g2(W2 ·ha).
We denote fRNN the global function outputting both the
next value prediction and the next state. In this article, we
aim at predicting future values based on past values and
context factor representations: at each time step, we feed
the RNN cell with the factor representations: ha, ˆxa+1 =
fRNN (ha−1, [s, t, xa]), h0 = 0 This decoder also en-
ables us to learn the contextual profiles in the transductive
setting.

b) Decoder & Sequence generation: RNN architecture
can also be used for the complete sequence generation, as
previous proposals. In this case, we modify the RNN cell
so that it takes only the context and the previous state:
ha, ˆxa+1 = fRNN (ha−1, [s, t]) and we use it recursively,
the initial state still being 0.

c) Encoder: When used as encoder in our model, the
RNN takes as input the input series step by step and it’s
final internal state gives us the latent representation of our
context. The last internal state hT is fed to a regular MLP
to give us the representation of the context. Once again, two
separated MLP are required to encode two factors. As for
the previous architecture, the RNN encoder is learnt in an
end-to-end manner.

IV. EXPERIMENT

We tested our models on three different datasets. Each is
comprised of times series labelled with spatial and temporal
contexts. The temporal context matches days. The measure
are taken hourly giving us 24-hour long time series.

A. Datasets

a) Smart card dataset (STIF): The smart card dataset,
denoted STIF, was collected by Ile-de-France Mobilites and
counts more than 256 millions of smart card validations’
logs on the Parisian subway network (299 stations). The raw
data contains for each log the location, hour and day of the
validation. We aggregated these logs by hour for each station
to get 24h long time series for each day of the period. It has
been collected during the last 3 months of 2015 (October,
November, December), which corresponds to 91 days. Three
very specific days were removed from the dataset. Thus, it
counts 88 temporal and 299 spatial contexts.

3The notation t is already used for the date. We use a to denote the
timestamp within a day. In this article a ∈ [1, T].

b) Energy Consumption: This kaggle dataset consists
of hourly consumption of energy. It comes from PJM Inter-
connection LLC, a regional transmission organization in the
US that supplies energy to large portion of the North East of
the United States. The energy grid is split over few regions,
each having there own reported consumption. We consider
each region as a spatial context. The data spans from the
2nd of June 2013 to the 2nd August 2018. Few days had
recording errors and were dismissed. This dataset has 1877
temporal and 10 spatial contexts.

c) Air quality : This dataset is also from Kagglewas
collected and opened by the City of Madrid This dataset
consists of hourly measures of a pollutant in the air of
Madrid. Measurement stations measured the NO2 and NO
level in µg/m3 in the air. The measurement cover the period
from the 2nd of January 2011 to the 30th of April 2018.
Some days had missing values and were dismissed. These
two datasets have 2669 possible temporal contexts and 24
possible spatial contexts.

B. Baselines

We compare our models to different baselines.
• The first baseline (BL avg) is very general and can be

used for the three tasks: it predicts x̂s,t by averaging
the observed time series sharing a common context.
x̂s,t = 1

|T |
∑
i∈T xi where the subset T gathers all

sequences from the training set associated with a lo-
cation s or a temporal context t. Thus the prediction
is deterministic for a given context. However, we study
stable applications where it makes sense.

• The second baseline (BL NN) can only be used for the
second task (adding new contexts) where we are given
a series corresponding to a new location xs?,k and we
aim at predicting all other {xs?,·}.It is based on the
idea of nearest neighbours (NN). The principle is to find
the p series in {x·,k} that are the closest to the target
xs?,k (i.e. the other locations that behave as s? on day
k). Let’s define T the set of locations of these series.
The prediction will be an aggregation of those close
locations at each time stamp: x̂s?,k = 1

p

∑
i∈T xi,k

• Our third baseline (Oracle NN) is an oracle since it
requires to access the ground truth. It is also based
on the idea of nearest neighbours. In this case, xŝ,t̂ is
simply estimated by averaging its p nearest neighbours
in the training set. It can’t be used on the second task,
because it requires access to other example of the same
context.

C. Results

For each of the datasets described above, we tested four
models: MLP, CNN, RNNgen and RNNpred (this latter
relying on the exploitation of ground truth values from the
past) and three baselines. All datasets are made of 24h hourly
time series taken at different locations, measuring a single
quantity. The datasets were normalized between 0 and 1
via min-max scaling. Because they were inherently multi-
scaled (for example some subway stations are much bigger

than others and the most frequented part of town have more
pollutant than others), this normalisation was done location
by location.

a) Task 1: sequence generation / matrix completion:
The Table I shows our results for our first task (matrix
completion) with the MSE between the predicted series and
the ground truth. As expected, the oracle baseline achieves
near perfect results. Indeed, we work on data presenting
strong regularities: for any date, it exists a very similar day
in the training set. The transductive settings (using embed-
dings matrices) outperforms the inductive settings because
it encodes the exact information of the context, whereas the
inductive settings does not have access to it. For instance, the
transductive approach knows that it has to predict a March
8th (and it has the corresponding representation from the
learning step) whereas the inductive approach only knows
several sequences from the same date and encodes the
representation online during the inference step.

Our results are very interesting on public transportation
affluence and energy consumption prediction. For NO and
NO2, the low number of spatial contexts (24) combined
with a strong regularities makes the last baseline particularly
efficient. It is important to note that this last baseline has
more information than the inductive setting (as explained
above).

b) Task 2: sequence generation / new context: Task 2,
consisting in making prediction for all days from a single
sequence associated with a new location (or respectively
extrapolating predictions for all location from one sequence
corresponding to a new day) is challenging but really valu-
able from an industrial point of view. It could cut down on
a lot of data collection costs.

The Table II shows our results on this task (same MSE as
the previous one). Our results on the new location are just
as the same as our baselines for the datasets on Energy and
Air quality which can be explained by the low number of
location in the datasets (10 and 24). However, our proposal
are very efficient on public transportation and, on all dataset,
for the prediction of what is going to happen on a new day.
This latter series of experiments is very promising for a wide
range of applications: in particular, it could be a way to
provide efficient sales forecasting at a fine grain scale (shop
and/or product).

c) Task 3: Time series forecasting: We finish by the
most classical task. As we aim at predicting only the next
time step (and not the whole day), our forecasting are more
accurate. The Table III shows our results on the third task
(same MSE as the previous ones).

Our proposals work particularly well on this task. Not only
do we overcome average baselines (that provide long term
predictions) but we also clearly exceed the classical baseline
consisting in predicting the last observed value and even the
oracle baseline.

V. CONCLUSION

We provide a new elegant framework and demonstrate
that it is able to provide state of the art forecastings on a

STIF Energy NO NO2
Encoder Decoder Series avg Emb. avg Series avg Emb. avg Series avg Emb. avg Series avg Emb. avg

Oracle NN (p) 0.001 (5) 0.00008 (4) 0.0007 (5) 0.0031 (5)
BL avg (temporal) 0.0179 0.006 0.0107 0.0215
BL avg (spatial) 0.0121 0.0089 0.0045 0.0098

Emb MLP 0.0028 0.002 0.0043 0.0098
Emb CNN 0.0053 0.0048 0.0046 0.0101
Emb RNN 0.0016 0.0015 0.0041 0.0102

MLP MLP 0.0084 0.0084 0.0046 0.0047 0.0052 0.0052 0.0106 0.0105
CNN CNN 0.0073 0.0073 0.0059 0.0059 0.0058 0.0057 0.0104 0.0105
RNN RNN 0.0026 0.0025 0.0036 0.0034 0.0050 0.0051 0.0107 0.0105

TABLE I
MSE ERRORS FOR TASK 1: SEQUENCE GENERATION WITH THE MATRIX COMPLETION SETTING. FROM TOP TO BOTTOM: BASELINES, TRANSDUCTIVE

MODELLING & INDUCTIVE MODELLING (CONTEXT ENCODED ON THE FLY).

STIF Energy NO NO2
Encoder Decoder Series avg Emb. avg Series avg Emb. avg Series avg Emb. avg Series avg Emb. avg

N
ew

lo
c.

BL NN (p) 0.0123 (150) 0.0081 (3) 0.0049 (5) 0.0107 (5)
BL avg. 0.0125 0.0087 0.0052 0.0112

MLP MLP 0.0059 0.0059 0.0118 0.0118 0.0058 0.0057 0.0107 0.0107
CNN CNN 0.0075 0.0076 0.0099 0.0102 0.0062 0.0064 0.0101 0.0102
RNN RNN 0.0049 0.0049 0.0107 0.0108 0.0062 0.0065 0.0106 0.0108

N
ew

da
y

BL NN 0.0143 (7) 0.0093 (900) 0.0099 (70) 0.0207 (60)
BL avg. 0.0145 0.0089 0.0103 0.0210

MLP MLP 0.0063 0.0061 0.0076 0.0076 0.0062 0.0062 0.0133 0.0133
CNN CNN 0.0061 0.0059 0.0065 0.0063 0.0071 0.0071 0.0129 0.0128
RNN RNN 0.0041 0.0040 0.0047 0.0046 0.0063 0.0063 0.0139 0.0139

TABLE II
MSE ERRORS FOR TASK 2: NEW LOCATIONS ABOVE, NEW DAYS BELOW.

STIF Energy NO NO2
Encoder Decoder Series avg Emb. avg Series avg Emb. avg Series avg Emb. avg Series avg Emb. avg

Baseline forecasting 0.0184 0.0005 0.0029 0.0049
Baseline NN (p) 0.001 (5) 0.00008 (4) 0.0007 (5) 0.0031 (5)

K
no

w
n

co
nt

ex
ts

Emb RNN_pred 0.0001 0.0003 0.0001 0.0001

RNN RNN_pred 0.0002 0.0002 0.00008 0.00008 0.0001 0.0001 0.0004 0.0002

N
ew

da
y

RNN RNN_pred 0.0003 0.0003 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002

N
ew

lo
c.

RNN RNN_pred 0.0001 0.0001 0.00003 0.00003 0.0005 0.0005 0.0001 0.0001

TABLE III
MSE ERRORS FOR TASK 3: FORECASTING ON A SHORT TERM BASIS.

short term basis as well as to tackle new tasks that could be
valuable in several industrial applications.

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under grant
agreement No 780754, "Track & Know".

REFERENCES

[1] Y. Bengio, “Deep learning of representations: Looking forward,”
CoRR, vol. abs/1305.0445, 2013. [Online]. Available: http://arxiv.org/
abs/1305.0445

[2] G. E. Box and G. M. , “Some recent advances in forecasting and
control,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 17, no. 2, pp. 91–109, 1968.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” 2013.

[6] F. Strub, R. Gaudel, and J. Mary, “Hybrid recommender system
based on autoencoders,” Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems - DLRS 2016, 2016. [Online].
Available: http://dx.doi.org/10.1145/2988450.2988456

[7] P. Cribier-Delande, R. Puget, V. Guigue, and L. Denoyer, “Time series
prediction using disentangled latent factors,” ESANN, 2020.

[8] J. Franceschi, A. Dieuleveut, and M. Jaggi, “Unsupervised scalable
representation learning for multivariate time series,” CoRR, vol.
abs/1901.10738, 2019. [Online]. Available: http://arxiv.org/abs/1901.
10738

[9] S. Makridakis and S. Wheelwright, Forecasting: Methods and Appli-
cations. John Wiley & Sons Ltd., New York, 1978.

[10] L. B. Taylor SJ, “Forecasting at scale,” 2017.

http://arxiv.org/abs/1305.0445
http://arxiv.org/abs/1305.0445
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1406.1078
http://dx.doi.org/10.1145/2988450.2988456
http://arxiv.org/abs/1901.10738
http://arxiv.org/abs/1901.10738

	Introduction
	Notations and tasks
	Transductive setting: a matrix completion approach
	Inductive setting: generating time-series from unseen factors
	Classical forecasting setting

	Model & Learning procedure
	Multi-Layer Perceptron
	Convolutional Neural Network (CNN)
	Recurrent Neural Networks (RNN) & Forecasting

	Experiment
	Datasets
	Baselines
	Results

	Conclusion
	References

