
Week3_Lab_Discrete_Time_Markov_Chains

January 5, 2018

MOOC: Understanding queues
Python simulations
Week III: Discrete time Markov chains

In this lab, we consider the Markov chain of the weather forecast example of the course. We
check convergence of the probability π(t) of the chain at time t to a steady state distribution π∗,
independently from the initial distribution π(0) of the chain. We solve the load balance equations
to get π∗.

Let us consider the Markov chain of the weather forecast example of the course. Recall that its
states 1, 2 and 3 represent clear, cloudy and rainy states, and the transition matrix is

P =

0.7 0.3 0
0.3 0.5 0.2
0.1 0.4 0.5

 .

1) Complete below the code of the function that generates trajectories of the Markov chain.
The function inputs are the chain initial state x0, the transition matrix P and final time index T. Its
output will be a trajectory x of the chain observed between instants 0 and T. Draw a trajectory of
the evolution of the weather between time 0 and time T = 100.

In []: %matplotlib inline
from pylab import *

In []: P = array([[.7, .3, 0], [.3, .5, .2], [.1, .4, .5]])

def X(x0,P=P,T=100):
Function X supplies a trajectory of the discrete Markov chain
with initial state x0 and transition matrix P, till time T
x = [x0]
for _ in range(T):

#####################
supply the vector p of probabilities to transit to states
1,2,3 from the last calculated state
p = ...

1

#####################
u = rand()
if u<p[0]:

x.append(1)
elif u<p[0]+p[1]:

x.append(2)
else:

x.append(3)
return array(x)

V1 = mean(X(x0=1,T=10**4))

In []: def step(x,y,Tmax=0,color='b'):
step function
plots a step function representing the number
of clients in the system at each instant
if Tmax==0:

Tmax = max(x)
x = append(x,[Tmax]) # number of clients
y = append(y,[y[-1]]) # instants of events
for k in range(len(x)-1):

vlines(x[k+1],y[k],y[k+1],color=color)
hlines(y[k],x[k],x[k+1],color=color)

T = 100
x = X(x0=1)
figure(num=None, figsize=(15, 4))
step(range(T),x)
axis(ymin=0.5,ymax=3.5)
xlabel("Time")
title("Weather")
yticks([1.0,2.0,3.0], ["Clear","Cloudy","Rainy"]);

2) Run the following code that computes recursively the state probability vectors π(t) at times
t = 0, . . . , 100. The state probability vectors can be computed recursively : π(t + 1) = π(t)P.
Check that, when changing the initial state x0, π(t) still converges rapidly to the same asymptotic
vector π∗ as t increases.

In []: T = 20

def PI(pi0,P=P,T=T):
Function PI computes the state probability vectors
of the Markov chain until time T
pi_ = array([pi0])
for i in range(T):

pi_ = vstack((pi_,pi_[-1] @ P))
return pi_

2

def plot_PI(x0):
subplot(1,3,n+1) of successive states probabilities
with initial state x0
pi_0 = zeros(3)
pi_0[x0-1] = 1
pi_ = PI(pi_0)
subplot(1,3,x0)
plot(pi_)
xlabel('t');axis(ymin=0,ymax=1)
if x0==1: ylabel(r"$\pi(t)$")
if x0==2: title("Evolution of $P(X_t)=1,2,3$.")

rcParams["figure.figsize"] = (10., 4.)
for x0 in range(1,4):

plot_PI(x0)

3) To compute the steady state distribution π∗ = [π∗
1 , π∗

2 , π∗
3], we must solve the system of load

balance equations π∗ = π∗P with the normalization condition π∗
1 + π∗

2 + π∗
3 = 1. The system of

equations π∗ = π∗P is redundant : the third equation is a straightforward linear combination
of the first two ones. Taking into account the normalization condition π∗

1 + π∗
2 + π∗

3 = 1 and
discarding the third redundant equation in π∗(P − I3) = 0 yields a full rank system of equations.
Complete the code below to solve this system and obtain the steady state ditribution. We will use
the solve function from the scipy.linalg library.

In []: from scipy.linalg import solve
####################
complete the code to get the steady state distribution
of the discrete time Markov chain
pi_ = solve(... , ...)
print("steady state distribution: pi* =",pi_)
####################
V2,V3 = pi_[0],pi_[1]

1 Your answers for the exercise

In []: print("---------------------------\n"
+"RESULTS SUPPLIED FOR LAB 3:\n"
+"---------------------------")

results = ("V"+str(k) for k in range(1,4))
for x in results:

try:
print(x+" = {0:.2f}".format(eval(x)))

except:
print(x+": variable is undefined")

3

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html#scipy.linalg.solve

	Your answers for the exercise

