
Week5_Lab_multi_server

January 22, 2018

MOOC: Understanding queues
Python lab
Week V: Multi server systems

This lab focusses on multiserver queues. Numerical computations are peformed that illustrate
the results obtained in the problems that we just studied.

1) Let us consider an M/M/C/C queue with offered load ρ. Complete the code of function
p(rho,C) that returns the vector of length C + 1 that represents the stationary distribution of an
M/M/C/C queue with C servers

In [ ]: %matplotlib inline
from pylab import *

In [ ]: # Calculation of the stationary distribution of an M/M/C/C
def p(rho,C):

pi_ = ones(C+1)
for k in range(C):

#####################
# supply the expression of pi_[k+1]
# in terms of pi_[k]
pi_[k+1] = ...
#####################

pi_ = pi_/sum(pi_)
return pi_

#----------
V1 = p(1,4)[0]

2) Complete the code of the function Eb(rho,C) that implements the computation of the loss
probability (Erlang B formula). Check that for the problem of the videoconference server where
λ = 1, µ = 1 and C = 4 you find the same result as in the problem.
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In [ ]: #############
# Complete the code of Erlang B formula
def Eb(rho,C):

return ...
#############
lambda_, mu, C = 1., 1., 4
V2 = Eb(lambda_/mu,C)

3) Using the curves below that represent the loss probability Eb vs the offered load, give the
minimum values of C for which the loss probability is lower than 3% and .5% respectively for
ρ = 1Erlang. Note that you can change the value of C in the figure below by moving around the
slider on top of it.

In [ ]: # Importing ipywidgets for interactive plotting
from ipywidgets import *

In [ ]: rcParams['figure.figsize'] = 10,7
def plt_Eb(C):

# plot of rho -->Eb(rho,c)
C_max = 20
rho_max = 4
ymin = 1.0e-7
ymax = 60
rho = linspace(0,rho_max,100)

plot(rho, [100*Eb(r,C) for r in rho])
grid('on')
xlabel(r"Offered Load $\rho$", fontsize=20)
ylabel(r"$E_B (\%)$", fontsize=20)
title("Loss probability", fontsize=20)
def point_loss(x,y,color,label):

# point rho=x and loss_probability=y%
semilogy(x,y,'o',color=color,label=label)
semilogy((0,rho_max),(y,y),'r',linewidth=.4)

semilogy((1,1),(ymin,ymax),'r',linewidth=.4)
# point of loss probability 1%
point_loss(1,3,color='b',label=r'$E_B=3\%$')
point_loss(1,.5,color='g',label=r'$E_B=0.5\%$')
legend(fontsize=20)
axis(xmin=0,xmax=rho_max,ymin=ymin,ymax=ymax)
show()

# interactive plot of rho -->Eb(rho,c) for varying c
interact(plt_Eb, C=(1,10,1))

#######################
# supply the minimum values of C such that Eb<3% and Eb<.5%
V3 = ... # min value of C such that Eb(1,C)<3%
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V4 = ... # min value of C such that Eb(1,C)<.5%
#######################

4) Now, we are going to extend the results of the video conferencing system problem to the
case where there can be subscribers and occasional clients and C ≥ 1.

For instance, in the case C = 3 states of the system are in the form (a, b) with 0 ≤ a, b ≤ 3.
In this case, putting balance equations in the form πQ = 0 yields a generator matrix Q in the

form

Q =



−(λ+ λ′) λ′ 0 0 λ 0 0 0 0 0
µ −(λ+ λ′ + µ) λ′ 0 0 λ 0 0 0 0
0 2µ −(λ+ λ′ + 2µ) λ′ 0 0 λ 0 0 0
0 0 3µ −(λ+ 3µ) 0 0 λ 0 0 0
µ 0 0 0 −(λ+ λ′ + µ) λ′ 0 λ 0 0
0 µ 0 0 µ −(λ+ λ′ + 2µ) λ′ 0 λ 0
0 0 µ 0 0 2µ −(λ+ 3µ) 0 λ 0
0 0 0 0 2µ 0 0 −(λ+ λ′ + 2µ) λ′ λ
0 0 0 0 0 2µ 0 µ −(λ+ 3µ) λ
0 0 0 0 0 0 0 3µ 0 −3µ


where [Q]ij is the entry (i, j) of Q that denotes transition intensity from state (a, b) to state (c, d)

with i = (a(C+1)−a(a−1)/2+b and j = c(C+1)−c(c−1)/2+d for i 6= j and [Q]ii = −
∑

j 6=i[Q]ij .
The general implementation of matrix Q is given in function matQ(lambda_s,mu,lambda_o,C)
below where lambda_s and lambda_o stand for the intensity of arrivals of subscribers (λ) and
occasional customers (λ′). Complete the code of the function and check that for C = 3 we find the
expression given above here for Q.

In [ ]: def ab_to_i(a,b):
# index conversion (a,b)-->i
# (a,b) stands for the state (N,N')
# and i for the corresponding line or column index of Q
# note that matrix and state pairs indexing begin at 0
return int(a*(C+1)-a*(a-1)/2 + b)

def matQ(lambda_s,mu,lambda_o,C):
# building Q
s = int((C+1)**2-C*(C+1)/2)
Q = zeros(shape=(s,s))
for a in range(C+1): # loop over N

for b in range(C+1-a): # loop over N'
i = ab_to_i(a,b) # corresponding index in the matrix Q
if b>0: # transition (a,b)-->(a,b-1)

Q[i,ab_to_i(a,b-1)] = b*mu
if a>0: # transition (a,b)-->(a-1,b)

Q[i,ab_to_i(a-1,b)] = a*mu
if b<C-a: # transition (a,b)-->(a,b+1)

Q[i,ab_to_i(a,b+1)] = lambda_o
if i<s-1: # transition (a,b)-->(a+1,b)
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Q[i,ab_to_i(a+1,b)] = lambda_s
elif i<s-1: # transition (a,C-a)-->(a+1,C-a-1)

Q[i,ab_to_i(a+1,b-1)] = lambda_s
############################
# Supply the value of Q[i,i]
Q[i,i] = ... # setting constraint sum(Q[i,:])=0
############################

return Q

lambda_s,mu,lambda_o,C = 1,1,2,3
matQ(lambda_s,mu,lambda_o,C)

5) For C = 4, let us compute the stationary distribution πQ of the system from equations
πQQ = 0 and

∑
i πQ[i] = 1 (two techniques are provided below). From πQ, compute the blocking

probability for N and for N ′.

In [ ]: # to solve overdetermined systems of equations Ax=b
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
from scipy.linalg import lstsq

In [ ]: set_printoptions(precision=4)
lambda_s,mu,lambda_o,C = 1,1,2,4
A = matQ(lambda_s,mu,lambda_o,C).T
m,n = A.shape
A = vstack((A,ones(n))) # adding constraint sum(pi[i])=1
b = zeros(m+1)
b[-1] = 1
# solves equations pi.Q=0 and normalization condition
pi_Q = lstsq(A,b)[0]
##########################
# supply the blocking probability for for suscribers
# and occasional users
def blocking(pi_Q,C):

#returns blocking probability for suscribers (P_s)
# and occasional users (P_o)
P_s = ...
P_o = ...
return P_s, P_o

##########################
V5,V6 = blocking(pi_Q,C)
print("The blocking probability for N is %.3f" %V5)
print('Erlang B formula yields Eb(',lambda_s/mu,',',C,

') = %.3f' %Eb(lambda_s/mu,C))
print("The blocking probability for N' is %.3f" %V6)

Until now, we have considered the case C = 4. Le t us show the influence of C on blocking
probabilities for subscribers and occasional customers. As expected blocking probabilities for sub-
scribers remains lower than that of occasional customers and both blocking probabilities decrease
to 0 as C increases.
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In [ ]: Cmax = 10
rcParams["figure.figsize"] = 12,9
for C in range(1,Cmax+1):

A = matQ(lambda_s,mu,lambda_o,C).T
m,n = A.shape
A = vstack((A,ones(n))) # adding constraint sum(pi[i])=1
b = zeros(m+1)
b[-1] = 1
# solves equations pi.Q=0 and normalization condition
pi_Q = lstsq(A,b)[0]
P_s,P_o = blocking(pi_Q,C)
semilogy(C,P_s,'or')
semilogy(C,P_o,'og')

semilogy(C,P_s,'or',label='subscribers')
semilogy(C,P_o,'og',label='occasional')
grid('on')
legend(fontsize=20)
xlabel('C',fontsize=20)
ylabel('Blocking probability',fontsize=20)

1 Conclusion

In this lab, we have confirmed the interest of using several servers in queuing systems. At the end
of this week you probably have become quite familiar with tweacking the code to deal with a few
standard or more advanced queuing systems.

Here we are! We hope that you found these labs helpful for understanding queues and possi-
bly set up your own simulation experiments of queueing systems.

2 Your answers for the exercise

In [ ]: print("---------------------------\n"
+"RESULTS SUPPLIED FOR LAB 5:\n"
+"---------------------------")

results = ("V"+str(k) for k in range(1,7))
for x in results:

try:
print(x+" = {0:.3f}".format(eval(x)))

except:
print(x+": variable is undefined")
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