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Queuing theory: from Markov chains to multiserver systems
Python Labs
Week I - Part II: simulation of random variables

As mentioned in the introduction of the labs, part 2 of the labs is intended to learners who want to get further
insight into the subjects studied in the MOOC. Although you will not get additional credits for them, depending
on the time you can afford for the MOOC, we invite you to consider them and contribute to the related
discussions on the forum.

Week 1: lab, part 2
In this second part of the lab, we are going to emphasize some aspects of simulation of exponential and
Poisson random variables.

In the first exercice we consider the squared coefficient of variation
(https://en.wikipedia.org/wiki/Coefficient_of_variation) of exponential distributions. The second exercice is
devoted to plotting histograms and further properties of the exponential distribution. The third exercice
introduces the connection between exponential and Poisson distributions.

I - Squared coefficient of variation of exponential random
variables
We will use the Statistics sublibrary of Scipy (https://docs.scipy.org/doc/scipy/reference/stats.html) to draw
samples of an  distribution.

1) Calculate the mean , variance  and squared coefficient of variation
(https://en.wikipedia.org/wiki/Coefficient_of_variation)  of an  distribution. Draw 
samples of an  distribution, for , 1 and 2. Compute the sample estimates of ,  and .
What do you notice?

2) Generate  samples of a uniform distribution on . Check that this data could very unlikely represent
realizations of an exponential random variable.
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In [1]:

Answer to question I-1

%matplotlib inline              
from pylab import *   

https://en.wikipedia.org/wiki/Coefficient_of_variation
https://docs.scipy.org/doc/scipy/reference/stats.html
https://en.wikipedia.org/wiki/Coefficient_of_variation
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In [3]:

Answer to question I-2

In [ ]:

II - Histograms and further properties of the exponential
distribution

λ=0.5: m=0.10, σ²=0.01, cv²=2.00 
λ=1.0: m=0.10, σ²=0.01, cv²=2.00 
λ=2.0: m=0.10, σ²=0.01, cv²=2.00 

from scipy.stats import expon

N  = 10**6
λs = (.5,1.0,2.0)
for λ in λs:
    ########################################
    # Supply scale parameter for function expon.rvs 
    # for documenation of expon.rvs , see doc at 
    # https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.expon.
    scale = 0.1
    data  = expon.rvs(scale=scale, size=N)   # simulation of a size N sample
    ########################################
    μ      = mean(data)
    σ2     = var(data)
    ########################################
    # Supply the expression coefficient of variation herein below
    cv2   = 2
    ########################################
    print("\u03BB={0}: m={1:1.2f}, \u03C3\u00B2={2:1.2f}, cv\u00B2={3:1.2f}"
          .format(λ,μ,σ2,cv2))  #\u... for unicode caracters
    # note : unicode tables can be found at https://unicode-table.com/en/

#----------
V1 = cv2
V2 = scale

N = 10**6
########################################
# generate a sample of IID uniformly distributed 
# random variables over [0,1]
data = ...  
########################################

μ      = mean(data)
σ2     = var(data)
cv2  = σ2/μ**2
print('Uniform distribution over [0,1]')
print("m={0:1.2f}, \u03C3\u00B2={1:1.2f}, cv\u00B2={2:1.2f}"
          .format(μ,σ2,cv2))

#--------
V3 = cv2
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1 - Simulation of an exponential distribution

1) Write a function that draws samples from an exponential distribution, with arguments 
and the sample size.
2) Generate  samples of an exponential distribution  with parameter 

, and plot the corresponding histogram, together with the probability density
function (pdf) of the distribution. Check that the histogram matches well the pdf.

2 - Memoryless property of the exponential distribution

1) Calculate the pdf of an  random variable  given that  and check that it
is given by the pdf . The exponential distribution is
memoryless, what does that mean?
2) Check this result for the samples drawn in section II-1 and , by comparing the
theoretical  and the conditional histogram.

3 - Exponentially distributed delays between independent events
We assume that  events (for instance arrivals of clients at a counter) are observed during a period of time .
Events are assumed to be independent with uniform distribution over the elapsed time interval.

1) Calculate the distribution of events inter-arrivals. To this end, calculate the probability
that no event occurs during a fixed time interval . Then, noting , show that the
distribution of events inter-arrivals tends to be  as  and  go to infinity, with a
constant ratio .
2) To check this result, plot the histogram of events inter-arrivals for  events over
a duration  hours and check that they are exponentially distributed by using a
Q-Q plot (https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot).
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Answer to question II-1-1

In [ ]:

Answer to question II-1-2

def exp_samples(λ=1,n=1):
    """
    generates a numpy array of n samples distributed according to
    an exponential distribution with parameter λ
    """
    return (-1/λ)*log(rand(n))

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
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In [ ]:

Answer to questions II-2-1 and II-2-2

Let  denote the pdf of an  random variable  given that . We assume that 
since if  the the conditional pdf is obviously equal to 0.

Let  denote the probability of  given , the cumulative function of  given that 

 is

Thus .

So, given that , the distribution of  follows an  distribution. If  denotes the instant
some event occurs, it appears that whatsoever the elapsed time , if the event did not occur yiet, the
remaining time before it still follows an  distribution and is thus independent on . Hence the
memoryless property of the exponential distribution.

We check that histogram fits well the pdf .
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λ       = .5
n       = 10**6
samples = exp_samples(λ=λ,n=n)
hist(samples,bins=100,density=True,label='samples histogram');
x = linspace(0,15,100)
plot(x,λ*exp(-λ*x),linewidth=2,color='r',
                 label=r'$Exp(\lambda)$ pdf')
"""
# equivalently, we can use the pdf supplied in Scipy.stats:
from scipy.stats import expon
plot(x,expon.pdf(x,scale=1./λ),linewidth=2,color='r',
                 label=r'$Exp(\lambda)$ pdf, with $\lambda=.5$')
"""

axis(xmax=15)
title(r'Histogram of exponentially distributed samples ($\lambda=.5$)')
legend();
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In [ ]:

Answer to question II-3-1

Let  denote the elapsed time between two events. If , that is, no event occurs during some delay , the 
 events must occur during a period of time of , which is true with probability

As , , showing thus that  becomes exponentially
distributed.

𝑋 𝑋 > 𝑡 𝑡

𝑁 𝑇 − 𝑡

𝑃 (𝑋 > 𝑡) = = (1 − 𝑡/𝑇 = exp(𝑁 log(1 − 𝑡/𝑇 )).( )
𝑇 − 𝑡

𝑇

𝑁

)𝑁

𝑇 → ∞ exp(𝑁 log(1 − 𝑡/𝑇 )) ≈ exp(−𝑁𝑡/𝑇 ) = exp(−𝜆𝑡) 𝑋

Answer to question II-3-2
Histogram and QQ-plot figure confirm that inter-arrivals are exponentially distributed with parameter .𝜆 = 𝑁/𝑇

λ       = .5
n       = 10**6
samples = exp_samples(λ=λ,n=n)
x0      = 2
# We only keep samples x obtained given that x>x0:
sensored_samples = samples[samples>2]
hist(sensored_samples,bins=100,density=True,label='samples histogram');
x = linspace(0,15,500)
# We check that the pdf of the exponential distribution with offset x0
# fits well the periodogram of sensored sample
plot(x,λ*exp(-λ*(x-x0))*(x>=x0),linewidth=2,color='r',
     label=r'$Exp(\lambda)$ pdf, with $\lambda=.5$ and offset $x_0=2$')
title(('Histogram of $X\sim Exp(\lambda)$ conditionally to $X>x_0$'
        +'( $\lambda$=.5,$x_0$=2)'))
axis(xmin=0,xmax=15)
legend();
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In [ ]:

III - The Poisson distribution
The Poisson distribution (https://en.wikipedia.org/wiki/Poisson_distribution) is a discrete distribution  with
probabilities that depend on a parameter  and are in the form of

We denote by  the Poisson distribution with parameter .

1) To make clear why the Poisson distribution naturally arises in counting random events, consider the instants
of arrival generated in the simulation of section II-3-2, where we found that the inter-arrivals were exponentially
distributed with intensity  events per hour. Check that the number of events per hour is well
described by a Poisson distribution (take ). To this end, plot the histogram of the number of events
per day and check that it fits well a  distribution, with .

2) In section I, we have seen how, in some situations, samples of a distribution with a given pdf can be
obtained from samples uniformly distributed over the interval . In the same way, samples from discrete
distributions can be obtained via sampling of a uniform distribution over . Letting  a discrete random
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N = 10**5     # number of events
T = 5*10**3   # duration
x = sort(T*rand(N)) # instants of events 
y = x[1:N]-x[:N-1]  # delay between events

subplot(121)
hist(y,bins=40,density=True,label='Data histogram');

#########################################
# Supply an estimate of lambda, assuming that 
# samples of data y follow an Exp(λ) distribution 
λ = ...
#########################################
print('mean={0:1.3f} (approx. {1} event per hour)\nvar={2:1.3f}'
      .format(1./λ,int(round(λ)),var(y)))
t = linspace(0,max(y),100)
figure(figsize=(10., 4.))
plot(t,λ*exp(-λ*t),linewidth=2,color='r',
     label='Exponential pdf')
legend()
title('pdf of inter-arrivals')

#QQ-plot
subplot(122,aspect=1)
N2 = 1000      # sample size for QQ-plot
y2 = sort(y[:N2])
z  = sort((-1./λ)*log(rand(N2)))
t = linspace(0,max(y2[-1],z[-1]),2)
for k in range(N2):
    plot(y2[k],z[k],'or')
plot(t,t)
axis(xmin=0,xmax=t[-1]+.1,ymin=0,ymax=t[-1]+.1)
title('QQ-Plot')

#--------------
V4 = λ

https://en.wikipedia.org/wiki/Poisson_distribution
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p g g
variable with values in a countable set (finite , or infinite ), and 

. Then, letting  denote a sample from an  distribution, the value  such that that 
 if

is obtained with probability .

*1 - * Prove the above statement.
*2 - * From this result, draw  samples from a Poisson distribution with parameter 

 and check that the corresponding histogram fits well a Poisson distribution.

3) Alternatively, use the statistics sublibrary of Scipy to draw samples from the Poisson distribution, with 
. Check from empirical estimates, computed from  samples, that  for the

Poisson distribution.
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Answer to question III-1

In [ ]:

# Function Poisson_dist generates the first n probabilities 
# of a Poisson distribution with parameter λ
# 2 implementations are proposed here
# argument n represents the number of probabilities considered

"""
# 1) Direct implementation
def Poisson_dist(n=ceil(2*λ),λ=λ):
    Poisson = exp(-λ)*ones(n)
    for k in range(1,n):
        Poisson[k] = Poisson[k-1]*(v/k)
    return Poisson
"""

# 2) Using function scipy.stats.poisson:
from scipy.stats import poisson
def Poisson_dist(n=ceil(2*λ),λ=λ):
    return poisson.pmf(arange(n),λ)
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In [ ]:

Answer to question III-2-1

Since for  we have , the probability that  is 
. Thus the value  is obtained with probability , which corresponds to the

distribution of .

0 ≤ 𝑎 ≤ 𝑏 ≤ 1 𝑃 (𝑢 ∈]𝑎, 𝑏]) = 𝑏 − 𝑎 < 𝑢 ≤∑𝑘−1𝑖=0 𝑝𝑖 ∑𝑘𝑖=0 𝑝𝑖
( ) − ( ) =∑𝑘𝑖=0 𝑝𝑖 ∑𝑘−1𝑖=0 𝑝𝑖 𝑝𝑘 𝑥𝑘 𝑝𝑘

𝑋

Answer to question III-2-2

# Simulation of the instants of events (as in II-3-2)
N = 10**5            # number of events
T = 5*10**3          # duration
λ = N/T
t = sort(T*rand(N))  # instants of invents

# Histogram
# Number of events occuring in successive times intervals [0,1[,[1,2[,...:
nb_events = array([sum(floor(t)==k) for k in range(int(t[-1]))])
# Number of occurences of 0,1,2,... events among the 1 hour time intervals:
hist_      = array([sum(nb_events==k) for k in range(max(nb_events)+1)])
#####################################
# Normalize the histogram of data
hist_      = ...
#####################################

figure(figsize=(8., 2.))
plot(0, hist_[0],'ro',markersize=6,label='Data histogram')
for k,v in enumerate(hist_[1:]):
    plot(k+1, v,'ro',markersize=6)

# Poisson distribution
Poisson = Poisson_dist(n=len(hist_))
x       = range(len(hist_))
vlines(x,0,Poisson,colors='b',label="Poisson distribution")
plot(x, Poisson,'bx')

legend(loc='upper right')
title(('Poisson distribution $\mathcal{P}$(%d),'
       +' generated from the simulation of independent times of arrival')
       %λ)

#------------------
# test variable V_3_1 represents histogram mean
# and should be close to N/T=20
V5 = sum(hist_*range(len(hist_)))
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In [ ]:

Answer to question III-3

N        = 10**5 # number of samples
λ        = 20
nb_proba = 41    # number of probabilities accounted for

# Histogram
Poisson          = Poisson_dist(n=nb_proba)
cum_distribution = cumsum(Poisson) # cumulated Poisson distribution
u                = sort(rand(N))
hist_            = zeros(nb_proba) # histogram initialization
index            = 0               # index position in vector u
for n in range(nb_proba):
    while (index<N) and (u[index]<cum_distribution[n]) :  
        hist_[n]  +=1.  # counting how many samples of u fall
        index     +=1   # inside cumulated distribution intervals.
hist_ = hist_/index     # Histogram normalization.

figure(figsize=(8., 2.))
plot(0, hist_[0],'ro',markersize=6,label='Data histogram')
for k,v in enumerate(hist_[1:]):
    plot(k+1, v,'ro',markersize=6)

# Poisson distribution
Poisson  = Poisson_dist(n=nb_proba)
x        = range(nb_proba)
vlines(x,0,Poisson,colors='b',label="Poisson distribution")
plot(x, Poisson,'bx')
legend(loc='upper right')
title(('Poisson distribution $\mathcal{P}$(%d),'
       +' generated from uniform distribution')%λ);
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In [ ]:

Estimated mean and variance of the Poisson distribution: we check that we get approximatly 
from simulation.

𝔼[𝑋] = = 𝜆𝜎
2
𝑋

In [ ]:

Conclusion

from scipy.stats import poisson

λ        = 20
N        = 10**5
nb_proba = 41    

# Histogram generated from function scipy.stats.poisson.rvs
#############################################
# Supply parameter mu for function poisson.rvs
# see the following ling for help about poisson.rvs:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html
c      = ...
sample = poisson.rvs(mu=c, size=N)
#############################################
hist_  = array([sum(sample==k) for k in range(nb_proba)]) # Histogram
hist_  = hist_/sum(hist_)         # Histogram normalization
figure(figsize=(8., 2.))
plot(0, hist_[0],'ro',markersize=6,label='Data histogram')
for k,v in enumerate(hist_[1:]):
    plot(k+1, v,'ro',markersize=6)

# Poisson distribution
Poisson  = Poisson_dist(n=nb_proba)
x        = range(nb_proba)
vlines(x,0,Poisson,colors='b',label="Poisson distribution")
plot(x, Poisson,'bx')

legend(loc='upper right')
title(('Poisson distribution $\mathcal{P}$(%d),'
       +' generated from function scipy.stats.poisson.rvs')%λ)
#---------
V6 = c

####################################
# compute mean and variance of sample vector 
# calculated in the code cell above
μ_sample  = ...
σ2_sample = ...
####################################
print(("\u03BB = {0}\nestimated mean = {1:1.2f}\n"
       +"estimated var = {2:1.2f}")
      .format(λ,μ_sample, σ2_sample))

#------------------------
V7 = μ_sample
V8 = σ2_sample
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In this Lab, we have considered several ways of drawing independant samples distributed according to an
absolutly continuous or a discrete distribution:

Simulation of samples from samples of uniform distributions;
Simulation of phenomena that generate samples distributed according to the target
distribution;
Simulation from the random generator of Scipy.

We have devoted particular attention to the exponential and Poisson distributions that are of particular interest
in the modelling of queues. We also considered the mean and variance of these distributions and their
calculation from observed samples. From next week, you will use these distributions to simulate queues.

Your answers for this notebook
In [ ]:

print("--------------------------------------------\n"
      +"VALIDITY OF RESULTS SUPPLIED FOR WEEK I - Part II:\n"
      +"--------------------------------------------")
results  = dict()
for k in range(1,9):
    results["V"+str(k)] = "NO"
try: 
    if abs(V1-1.)<.1:    results["V1"] =  "OK"
except: pass
try: 
    if abs(V2-.5)<.01:   results["V2"] =  "OK"
except: pass
try: 
    if abs(V3-.33)<.1:   results["V3"] =  "OK"
except: pass
try: 
    if abs(V4-20)<.1:    results["V4"] =  "OK"
except: pass
try: 
    if abs(V5-20)<.001:  results["V5"] =  "OK"
except: pass
try: 
    if abs(V6-20)<.0001: results["V6"] =  "OK"
except: pass
try: 
    if abs(V7-20)<.5:    results["V7"] =  "OK"
except: pass
try: 
    if abs(V8-20)<.5:    results["V8"] =  "OK"
except: pass

for key,val in results.items():
    print(key,': ',val)


