
Week3_Lab_Discrete_Time_Markov_Chains_part2

October 18, 2018

MOOC: Understanding queues
Python simulations
Week III - Part II: Discrete-time Markov chains

In this second part of the lab, we will study the token bucket mechanism. It uses tokens to
ensure that the rate of clients entering a system is limited in order to avoid congestion in the
system.

In this context, we will show how a Markov chain behavior can be exhibited and study some
properties of the system.

Notes - To display the token bucket and transition diagram in your noteboook , do not forget
to also upload the corresponding .png files. - This lab has been inspired by an exercise from the
queueing theory book by Bruno Baynat “Théorie des files d’attente: des chaînes de Markov aux
réseaux à forme produit”, Hermès Science Publications (ISBN:978-2-7462-0120-0).

1 Token Bucket

Let us consider a system to which clients arrive according to a Poisson process with rate λ = 1.5
arrivals per time unit. To regulate access into the system, a token-based mechanism is set up before
the system.

To enter the system, a client must get a token. Tokens are stored in a bucket which can contain
up to K = 3 tokens. If the bucket is not empty when a client arrives then the client takes one token
and enters the system. But if the bucket is empty then the client is lost. One new token is created
each T = 1 time unit.

We are going to study some properties of this system. For example, we would like to evaluate
the loss probability of clients, that is to say the probability that the bucket is empty when a new
client arrives.

First we use an analytical approach. It can be remarked that the number of tokens in the
bucket just after a new token has been produced is a discrete time Markov chain (DTMC). The
loss probability of clients can be derived from the steady state distribution of this DTMC. Then we
use simulations to estimate this loss probability and check that the estimated value is close to the
theoretical one.

1.1 Questions

We assume again that the capacity of the bucket is limited to K = 3 tokens, T = 1 and λ = 1.5.

1

1) Let αn be the probability that n clients arrive during a slot of T time units and let βn be the
probability that at least n clients arrive during a slot of T time units.

Knowing that the arrival process of clients is a Poisson process, what are the expressions of αn
and βn?

2) Explain why X is a discrete-time Markov chain. What are the possible values for Xn? In
particular is it possible that Xn = 0?

3) If Xn = 1 what are the possible values for Xn+1 and what are the corresponding transition
probabilities? Same question for Xn = 2 and Xn = 3. Draw the transition diagram of X and give
its transition probability matrix P.

4) Let [π1, π2, π3] denote steady-state probability distribution of X. What is the linear system
of equations satisfied by [π1, π2, π3]. Complete the code section to compute [π1, π2, π3].

5) What are the two conditions under which a token is lost? What is the probability that a
token is lost? Compute this probability.

6) What is the rate of consumed tokens (unit: tokens/s)? What is the rate of clients entering
the system? Compute the client loss probability.

7) We now use simulations to estimate this loss probability of clients and check that the esti-
mated value is close to the theoretical one. Consider the code of the function token_bucket below.
It simulates client arrivals and the operation of the token bucket mechanism. Complete and run
the code. Estimate the loss

1.2 Answers

1.2.1 Answer to question 1

As the clients arrival process is a Poisson process with rate λ, αn =
(λT)n

n!
e−λT. βn = 1 −

∑i=0:n−1 αi.

1.2.2 Answer to question 2

For any n ≥ 0, Xn depends only on Xn−1 and on the random number of clients that arrive in the
time interval]tn−1, tn]. As the clients arrival process is a Poisson process, the number of arrivals
on each time slot of length T is independent from each other. Consequently, knowing Xn−1, Xn is
independent from Xn−2, Xn−3, . . . and X is a discrete time Markov chain.

Xn can be equal to 1,2 or 3. It cannot be equal to 0 since Xn is the number of tokens in the
bucket just after the production of a new token.

1.2.3 Answer to question 3

If Xn = 1 and if no client arrives on]tn, tn+1] then Xn+1 = 2 as a new token is produced at time
tn+1. The corresponding probability is α0, so P(Xn+1 = 2 | Xn = 1) = α0.

If Xn = 1 and it at least one client arrives on]tn, tn+1] then the first client consumes the token,
the other clients are lost, a new token is produced at time tn+1 and Xn+1 = 1. The corresponding
probability is β1, so P(Xn+1 = 1 | Xn = 1) = β1. One can observe that α0 + β1 = 1 so that the
conditional probabilities sum up to 1.

2

In the same way, if Xn = 2 it comes that Xn+1 can be equal to 1, 2 or 3, depending on the
number of tokens consumed in the time interval]tn, tn+1].

P(Xn+1 = 1 | Xn = 2) = P("2 arrivals or more") = β2
P(Xn+1 = 2 | Xn = 2) = P("1 arrival") = α1
P(Xn+1 = 3 | Xn = 2) = P("0 arrival") = α0

If Xn = 3 it is possible that on the next slot a token is lost. If no client arrives then the next token
is lost because the bucket is full and Xn+1 = 3. If 1 client arrives then Xn+1 = 3 as well, since one
token is consumed and one token is produced. So, P(Xn+1 = 3 | Xn = 3) = P("0 or 1 arrival") =
α0 + α1.

If Xn = 3 and 3 clients or more arrive on the next slot then Xn+1 = 1: P(Xn+1 = 1 | Xn = 3) =
β3. And if Xn = 3 and 2 clients arrive on the next slot then Xn+1 = 2 so that P(Xn+1 = 2 | Xn =
3) = α2.

Again, it can be remarked that α0 + α1 + α2 + β3 = 1 so that we can be sure that we have not
forgotten any possible case.

Transition diagram of the chain:
where the Pij = P(Xn+1 = j|Xn = i) are given by

P11 = β1 = 1 − α0 = 1 − e−λT

P22 = α1 = (λT)e−λT

P33 = α0 + α1 = (1 + λT)e−λT

P12 = P23 = α0 = e−λT

P21 = β2 = 1 − ∑1
i=0 αi = 1 − (1 + λT)e−λT

P32 = α2 =
(λT)2

2
e−λT

P13 = 0 (since Xn+1 ≤ Xn + 1 with probability 1)

P31 = β3 = 1 − ∑2
i=0 αi = 1 − (1 + λT +

(λT)2

2
)e−λT

1.2.4 Answer to question 4

The steady state distribution [π1, π2, π3] satisfies equations ∑3
i=1 πiPij = πj for j = 1, 2, 3, that is,

π(P − I) = 0 (with I the identity matrix) and ∑3
i=1 πi = 1:

−e−λTπ1 +[1 − (1 + λT)e−λT]π2 +[1 − (1 + λT +
(λT)2

2
)e−λT]π3 = 0

e−λTπ1 +[(λT)e−λT − 1]π2 +
(λT)2

2
e−λTπ3 = 0

0 +e−λTπ2 +[(1 + λT)e−λT − 1]π3 = 0
π1 +π2 +π3 = 1

Note that the sum of the second and third equations equals the opposite of the first equation.
Thus, the first equation is redundant and it can be discarded. Then, looking for the solution of the
3 last equations yields [π1, π2, π3] = [0.616, 0.255, 0.129] (see code below).

In []: %matplotlib inline

from pylab import *

In []: from scipy.linalg import solve

To use solve, you can have a look at

3

https://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html#solving-linear-system

T = 1

= 1.5

a = *T

e_a = exp(-a)

A = array([[e_a, a*e_a-1, a**2/2*e_a],

[0, e_a, (1+a)*e_a-1],

[1, 1, 1]])

####################################

give the expression of the steady-state distribution

= ...

print('pi=',)

####################################

#----------

V1 = [2]

1.2.5 Answer to question 5

The token produced at time tn+1 is lost if (i) the bucket was full at time tn and no client has arrived
between tn and tn+1. Since both events are independent, the corresponding probability is π3α0.

In []: #######################

Enter P_loss_token

P_loss_token = ...

#######################

V2 = P_loss_token

1.2.6 Answer to question 6

The rate of tokens production is 1/T. As these tokens are lost with probability π3α0, the rate of
consumed tokens is (1 − π3α0)/T. As each client entering the system consumes one token, the
rate of clients entering the system is also λe = (1 − π3α0)/T. Thus, the rate of clients lost is λ − λe
and the loss probability of clients is (λ − λe)/λ.

In []: #######################

Enter P_loss_client

P_loss_client = ...

#######################

V3 = P_loss_client

1.2.7 Answer to question 7

In []: = 1.5 # intensity of clients arrivals at the bucket

T = 1. # generation period of tokens

Bsize = 3 # bucket size

def token_bucket(x0=1, Tmax=100):

x = [x0] # bucket states at instants 0, t_1, t_2, ...

4

(just after the production of tokens)

x_aux = x[-1] # bucket state between t_n and t_{n+1}

y = [] # clients indicator: 1 --> enter the system, 0-->rejected)

y permits

= [(-1/)*log(rand())] # times of client arrivals

n = 0 # number of elapsed intervals of duration T

while [-1]<Tmax:

generate tokens until next client arrival:

while [-1]> n*T+T:

n +=1 # increment time index

update the bucket state (add a new token in the bucket

if it is not full yet):

x.append(minimum(x_aux+1,Bsize))

x_aux = x[-1]

check whether the new client enters the system or not:

if x_aux>0: # the new client enters the system

x_aux = x_aux-1

y.append(1)

else: # the new client is rejected

y.append(0)

####################################

generate time of arrival of a new client:

.append(...)

####################################

= [:-1] # discard time of arrival > Tmax

return x, y,

x, y, = token_bucket()

figure(figsize=(12,4))

subplot(121)

step(T*arange(len(x)),x)

axis(ymin=0,ymax=4)

yticks([1,2,3],[1,2,3])

title("Bucket state")

subplot(122)

plot(,y,'r.')

axis(ymin=-.5,ymax=1.5)

yticks([0,1],[0,1])

title("Clients acceptation (0: discarded, 1: accepted)")

#------

x,y, = token_bucket(Tmax=10**4)

#########################

Supply the estimate of clients loss probability

V4 = ...

#########################

print("Estimated clients loss probability = ",V4)

5

Remark It can be noticed that from the point of view of tokens, the bucket is a D/M/1/K
queue (with K = 3). Indeed, tokens arrive at deterministic times nT and the time necessary
to consume 1 token has distribution Exp(λ). The D/M/1/K queue is not a Markovian queue:
the number of tokens in the bucket is not a continuous time Markov chain. However, at times
tn = (nT)+, the number of tokens in the bucket is a discrete time Markov chain and we used this
property to solve the problem.

2 Conclusion

This token bucket example illustrates that it is sometimes possible to compute quite simply some
parameters such as the steady state distribution from a simulation, while analytical derivation can
be somewhat more tedious. However, perhaps you noticed that writing a function that correctly
simulates the phenomenon under study requires a precise understanding of its evolution mecha-
nisms and care at programming. You will have more opportunities to simulate other Markovian
evolutions in the next labs.

3 Your answers for this notebook

In []: print("--\n"

+"VALIDITY OF RESULTS SUPPLIED FOR WEEK III - Part II:\n"

+"--")

results = dict()

for k in range(1,5):

results["V"+str(k)] = "NO"

try:

if abs(V1-.13)<.01: results["V1"] = "OK"

except: pass

try:

if abs(V2-.029)<.001: results["V2"] = "OK"

except: pass

try:

if abs(V3-.35)<.01: results["V3"] = "OK"

except: pass

try:

if abs(V4-.35)<.02: results["V4"] = "OK"

except: pass

for key,val in results.items():

print(key,': ',val)

6

	Token Bucket
	Questions
	Answers
	Answer to question 1
	Answer to question 2
	Answer to question 3
	Answer to question 4
	Answer to question 5
	Answer to question 6
	Answer to question 7

	Conclusion
	Your answers for this notebook

