检索增强模型

检索增强的大语言模型能检索上下文,查找和检索相关文档,将它们注入 Prompt,为 LLM 提供额外的信息,帮助 LLM 回答问题。提出这一思想的论文是《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》论文链接Arxiv Dive

课程材料

论文

约翰霍普金斯论文

Evolving Memory:

普林斯顿课程论文

  1. Emergence of Maps in the Memories of Blind Navigation Agents (Wijmans et al., 2023)

约翰霍普金斯推荐论文

Retrieval from Memory

Additional Reading:

普林斯顿课程推荐论文

Retrieval-based LMs

Refer:

华盛顿大学推荐论文

5: Parametric vs. non-parametric knowledge?

参数知识与非参数知识?

Should knowledge be neuralized or indexed? In what does condition one approach win over the other? Can we integrate the two?

知识应该神经化还是索引化?在什么情况下一种方法会胜过另一种方法?我们可以将两者结合起来吗?

  1. Generalization through Memorization: Nearest Neighbor Language Models (Khandelwal et al., 2020)
  2. Dense Passage Retrieval for Open-Domain Question Answering (Karpukhin et al., 2020)
  3. Training Language Models with Memory Augmentation (Zhong et al., 2022)
  4. When Not to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories (Mallen et al., 2022)
  5. Rich Knowledge Sources Bring Complex Knowledge Conflicts: Recalibrating Models to Reflect Conflicting Evidence (Chen et al., 2022)
  6. Transformer Memory as a Differentiable Search Index (Tay et al., 2022)
  7. Reasoning Over Virtual Knowledge Bases With Open Predicate Relations (Sun et al., 2021)
  8. Adaptable and Interpretable Neural Memory Over Symbolic Knowledge (Verga et al., 2021)
  9. Improving language models by retrieving from trillions of tokens (Borgeaud et al., 2021)

记忆相关论文

如何提高 Agent 的记忆和学习能力,也是目前的研究热点。AutoGPT 入门指南中有关于记忆的论文(Github),包括提高 Transformers 的长度限制、总结记忆的内容、用向量和数据结构压缩记忆内容、从记忆中检索,等等方面。

复旦大学的 LLM Agent 综述论文中也提到了LLM Agent 应用相关的 Memory 参考论文


Index Previous Next