检索增强模型
检索增强的大语言模型能检索上下文,查找和检索相关文档,将它们注入 Prompt,为 LLM 提供额外的信息,帮助 LLM 回答问题。提出这一思想的论文是《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》论文链接,Arxiv Dive。
课程材料
- 约翰霍普金斯 UA 2024 Lec 19 Dealing with limited context window
- Retrieval-augmentation
- Compressing context window
- Memory modules
论文
约翰霍普金斯论文
Evolving Memory:
- Memorizing Transformers
- Fast Model Editing at Scale
- SERAC: Memory-based Model Editing at Scale
- Towards Teachable Reasoning Systems
普林斯顿课程论文
约翰霍普金斯推荐论文
Retrieval from Memory
- Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
Additional Reading:
- Scaling Laws for Neural Language Models
- REALM: Retrieval-Augmented Language Model Pre-Training
- Improving language models by retrieving from trillions of tokens
- An Efficient Memory-Augmented Transformer for Knowledge-Intensive NLP Tasks
- When Not to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories.
- Unsupervised Dense Information Retrieval with Contrastive Learning
- Atlas: Few-shot Learning with Retrieval Augmented Language Models
- Relational Memory Augmented Language Models
普林斯顿课程推荐论文
Retrieval-based LMs
Refer:
- Generalization through Memorization: Nearest Neighbor Language Models
- Training Language Models with Memory Augmentation
- Few-shot Learning with Retrieval Augmented Language Models
华盛顿大学推荐论文
5: Parametric vs. non-parametric knowledge?
参数知识与非参数知识?
Should knowledge be neuralized or indexed? In what does condition one approach win over the other? Can we integrate the two?
知识应该神经化还是索引化?在什么情况下一种方法会胜过另一种方法?我们可以将两者结合起来吗?
- Generalization through Memorization: Nearest Neighbor Language Models (Khandelwal et al., 2020)
- Dense Passage Retrieval for Open-Domain Question Answering (Karpukhin et al., 2020)
- Training Language Models with Memory Augmentation (Zhong et al., 2022)
- When Not to Trust Language Models: Investigating Effectiveness and Limitations of Parametric and Non-Parametric Memories (Mallen et al., 2022)
- Rich Knowledge Sources Bring Complex Knowledge Conflicts: Recalibrating Models to Reflect Conflicting Evidence (Chen et al., 2022)
- Transformer Memory as a Differentiable Search Index (Tay et al., 2022)
- Reasoning Over Virtual Knowledge Bases With Open Predicate Relations (Sun et al., 2021)
- Adaptable and Interpretable Neural Memory Over Symbolic Knowledge (Verga et al., 2021)
- Improving language models by retrieving from trillions of tokens (Borgeaud et al., 2021)
记忆相关论文
如何提高 Agent 的记忆和学习能力,也是目前的研究热点。AutoGPT 入门指南中有关于记忆的论文(Github),包括提高 Transformers 的长度限制、总结记忆的内容、用向量和数据结构压缩记忆内容、从记忆中检索,等等方面。
复旦大学的 LLM Agent 综述论文中也提到了LLM Agent 应用相关的 Memory 参考论文。
Index | Previous | Next |