推理

什么是推理?

“推理”一词是一个总称,包括演绎、归纳、溯因、类比、常识以及其他解决问题的“理性”或系统方法的能力。推理通常是一个涉及多个推理步骤的过程。推理通常被认为需要抽象,也就是说,推理能力不限于特定示例,而是更普遍。如果我能推理加法,我不仅可以解决 23+37,还可以解决我遇到的任何加法问题。如果我学习以 10 为底的加法并了解其他底数的加法,我的推理能力可以让我快速学会以任何其他底数加法。

作为一个生成模型,大语言模型不具有严格意义上的推理能力。

推理 Prompt

我们可以利用 LLM 进行推理。输入下面的 Prompt,让 LLM 返回推理过程:

Logical and commonsense reasoning exam.

Explain your reasoning in detail, then answer with Yes or No. Your answers should follow this 4-line format:

Premise: . Question: . Reasoning: . Answer: .

Premise: the customer doesn’t have any loans Question: Can we logically conclude for sure that the customer doesn’t have any auto loans? Reasoning: Let’s think logically step by step. The premise basically tells us that

然后 GPT 会接着说,比如:the customer has no loans at all. Therefore, we can conclude that the customer doesn’t have any auto loans either becasuse no loans = no auto loans. Answer: Yes

因果

当异常发生时,追踪调查,分析导致异常的原因,这就是“诊断”。在教育中,这个被称为“知识追踪”;在智能运维中,这被称为“根原因分析”;在医学中,这被称为“病因诊断”。它们的共同特点是:根据异常发生时的各种表现,进行推理分析。

利用现有的通用大模型,以及各种领域的专用大模型(比如医学领域大模型),进行上述追踪任务,就是面向追踪的大语言模型。

课程材料

Awesome List

Conference

论文

Ng 老师推荐论文

Andrej Karpathy 推荐论文

约翰霍普金斯大学推荐论文

Rationalization/Explanations:

Compositionality:

普林斯顿课程推荐论文

Refer:

华盛顿大学课程推荐论文

3: Can language models reason? 语言模型可以推理吗?

Why is it that deep learning can play chess, fold proteins, yet cannot solve strikingly easy puzzles?

为什么深度学习可以下棋、折叠蛋白质,却不能解决极其简单的难题?

  1. Show Your Work: Scratchpads for Intermediate Computation with Language Models (Nye et al., 2021)
  2. Chain of Thought Prompting Elicits Reasoning in Large Language Models (Wei et al., 2022)
  3. Structured, flexible, and robust: benchmarking and improving large language models towards more human-like behavior in out-of-distribution reasoning tasks (Collins et al., 2022)
  4. Large Language Models Still Can’t Plan: A Benchmark for LLMs on Planning and Reasoning about Change (Valmeekam et al., 2022)
  5. Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought (Saparov and He, 2022)
  6. Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs (Sap et al., 2022)
  7. Natural Language Deduction with Incomplete Information (Sprague et al., 2022)
  8. Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations (Jung et al., 2022)
  9. Language Models of Code are Few-Shot Commonsense Learners (Madaan et al., 2022)
  10. Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning (Creswell et al., 2022)
  11. Faithful Reasoning Using Large Language Models (Creswell and Shanahan 2022)
  12. Binding Language Models in Symbolic Languages (2022)
  13. Which Linguist Invented the Lightbulb? Presupposition Verification for Question-Answering (Kim et al., 2021)
  14. CREPE: Open-Domain Question Answering with False Presuppositions (Yu et al., 2022)

Melanie Mitchell 论文

Memorization vs reasoning (Melanie Mitchell)

Agent 推理相关论文

复旦大学的 LLM Agent 综述论文中提到的LLM 推理和计划能力相关论文

Reasoning

综述论文

Choi 老师论文

系统

实现

评估


Index Previous Next