Agent 研究

智能代理能够为我们完成任务,具有智能:感知环境,学习或获取知识,来提高其性能。

为了实现智能追踪的 Agent,我们需要结合增强学习(RL)和大语言模型(LLM)。在我们的追踪 Agent 的设计中,LLM 提供知识和推理能力,而 RL 感知环境,调整策略,改进追踪的有效性和可靠性。

Multi Agent

Ng 老师推荐论文

软件

Survey

论文

下面是 Github Awesome Autonomous Agent Papers 网页 中推荐的论文。

RL-based agent

Instruction following

Build agent based on World model

Language as knowledge

LLM as a tool

Generalization across tasks

Continual learning

Combine RL and LLM

Transformer-based policy

Trajectory to language

Trajectory predication

Others

LLM-based agent

Multimodal

Train LLM for generalization & adaptation

Task-specific designing

Multi-agent (e.g., society, coperation)

Experimental analysis

Benchmark & Dataset

Applications

Algorithm design

Combined with RL

Others


Index Previous Next