
Transformer & BERT Pre-training

Sebastian Hofstätter
sebastian.hofstaetter@tuwien.ac.at

/s_hofstaetter

Today Transformer & BERT Pre-training

Transformer Architecture
• Self-attention

• Positional encoding

BERT Pre-training
• Masked language modelling task

• The BERT model

• HuggingFace: Sharing in the community

Extractive QA
• One example of a downstream task (useful in IR)

❶

❷

❸

Another Versatile Building Block

3

• The Transformer architecture (as CNNs and RNNs) is not task specific
• It operates on sequences of vectors, what we do with it is our choice

• Quickly gained huge popularity
• Pre-trained Transformers are now ubiquitous in NLP & IR research,

increasingly also in production systems

• Typical model sizes are not possible without modern hardware
• Transformers are basically designed for what GPUs are best at:

large matrix multiplications

Transformer

Contextualization via Self-Attention

Contextualization via Self-Attention

5

• Learn meaning based on
surrounding context for every
word occurrence

• This contextualization combines
representations

• Context here is local to the
sequence (not necessary a fixed window)

• Is computationally intensive O(n2)
• Every token attends to every other

token

The three steps to make a cappuccino ...

...Term
representation

Contextualized
representation

a measure or action, especially one of a
series taken in order to deal with or
achieve a particular thing.

steps

Transformer

6

• Transformers contextualize with multi-head self-attention
• Every token attends to every other token O(n2) complexity

• Commonly Transformers stack many layers

• Can be utilized as encoder-only or encoder-decoder combination

• Do not require any recurrence
• The attention breaks down to a series of matrix multiplications over the sequence

• Initially proposed in translation
• Now the backbone of virtually every NLP advancement in the last years

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, et al.
Attention is all you need. In NeurIPS. 2017.

Transformer – Architecture

7

• We embed (subword) tokens

• We add a positional encoding

• In each Transformer-Layer:
• Project each vector with 3 linear

layers to Query, Key, Value

• Transform projections to another
multi-head dimension

• Matrix-multiply Query & Key

• Get Q-K attention via softmax

• Multiply attention with Values and
project back to outputNice detailed walkthrough code + paper:

https://nlp.seas.harvard.edu/2018/04/03/attention.html

...

Contexualized
representations

...

Embedding

Transformer (n layers)

Positional
encoding

KQ V

* Out

... ..
.

*
T

https://nlp.seas.harvard.edu/2018/04/03/attention.html

𝑉

𝑑𝑘

Attention
“Value”

Dimension of
key embeddings

Self-Attention Definition

8

• The Transformer Self-Attention is defined as:

SelfAttention 𝑄,𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑘
∗ 𝑉

• Q, K, V are projections of the same input sequence

• This definition hides quite a bit of complexity, visible
in the code

𝐾 Attention
“Key”

𝑄 Attention
“Query”

Transformer in PyTorch

9

• Native support in PyTorch
• Brings many speed, stability, robustness improvements

• Raw Transformer Encoder:

• Can be a bit tricky to apply, especially masking & padding, & transposed input

Documentation: https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
Tutorial: https://pytorch.org/tutorials/beginner/transformer_tutorial.html

encoder_layer = nn.TransformerEncoderLayer(d_model=300,nhead=10,dim_feedforward=300)
transformer = nn.TransformerEncoder(encoder_layer, num_layers=2)

src = torch.rand(10, 32, 300)
out = transformer(src)

https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://pytorch.org/tutorials/beginner/transformer_tutorial.html

Transformer – Positional Encoding

10

• Transformers add sinusoid curves to the input, before the attention
• Informs about relative position inside the sequence

• Removes need for explicit recurrence patterns

Figure from https://nlp.seas.harvard.edu/2018/04/03/attention.html

https://nlp.seas.harvard.edu/2018/04/03/attention.html

Transformer - Variations

11

• Non-exhaustive list of
Transformer variants

• A lot focus on efficiency &
long input
• Break O(n2) runtime and

memory requirement

• Allow for thousands of input
tokens

• Incredible speed of innovation

More at:
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

In-Depth Resources for Transformers

12

• Popularity naturally brings more educational content
• More than we could cover today

• Here are some pointers, if you want to know more about Transformers:

http://jalammar.github.io/illustrated-transformer/

https://mccormickml.com/2019/11/11/bert-research-ep-1-key-concepts-and-sources/

https://github.com/sannykim/transformers

https://mccormickml.com/2019/11/11/bert-research-ep-1-key-concepts-and-sources/
https://mccormickml.com/2019/11/11/bert-research-ep-1-key-concepts-and-sources/
https://github.com/sannykim/transformers

Pre-Training

Workflows, Tasks, Models

Pre-Training Motivation

14

• Most tasks don’t come with huge training data

• Large (high capacity) models need a lot of data to work well

• Idea: Create a task-agnostic training that works unsupervised on large
sets of text
• Teaches the model about the meaning of words/patterns in the language

• Unsupervised: We have no labels, but make predictions about words/sentence
positions

• Continues the tradition of word2vec (albeit at a larger model scale)

• After a model is pre-trained it can be fine-tuned for a variety of tasks

Masked Language Modelling

15

• Recall our example:
• We want a good context-dependent

representation of “steps”

• Unsupervised Pre-training:
• Take text and mask random words

• Try to predict original word

• Update weights based on loss of
prediction vs. actual word

The three steps to make a cappuccino ...

...Term
representation

Contextualized
representation

a measure or action, especially one of a
series taken in order to deal with or
achieve a particular thing.

steps

Masked Language Modelling

16

• Training procedure:
• Take text and mask random words

• Try to predict original word from
context words

• Update weights based on loss of
prediction vs. actual word

• Loss requires prediction over
vocabulary
• Prohibitive for large vocabs

• Models use WordPiece or BytePair
splitting of infrequent terms

The three <mask> to make a cappuccino ...

...Term
representation

Contextualized
representation

Probability over full vocabulary

Prediction
......

BERT

17

• Bidirectional Encoder Representations from Transformers

• Large effectiveness gains on all NLP tasks

• Ingredients:
• WordPiece Tokenization & Embedding (small vocab, covers infrequent terms)

• Large model (many dimensions and layers – base: 12 layers and 768 dim.)

• Special tokens (shared use between pre-training and fine-tuning)
• [CLS] Classification token, used as pooling operator to get a single vector per sequence

• [MASK] Used in the masked language model, to predict this word

• [SEP] Used to indicate (+ sequence encodings) a second sentence

• Long MLM pre-training (weeks if done on 1 GPU)

Devlin et al. 2019 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT - Input

18

• Either one or two sentences, always prepended with [CLS]
• BERT adds trained position embeddings & sequence embeddings

More info: https://towardsml.com/2019/09/17/bert-explained-a-complete-guide-with-theory-and-tutorial/

https://towardsml.com/2019/09/17/bert-explained-a-complete-guide-with-theory-and-tutorial/

BERT - Model

19

• Model itself is quite simple: n Layers of stacked Transformers
• Using LayerNorm, GeLU activations (like ReLU, but with a grace swing under 0)

• Task specific heads on top to pool [CLS] or individual token representations

• Every Transformer layer receives as input the output of the previous one

• The [CLS] token itself is only special because we train it to be
• No mechanism inside the model that differentiates it from other tokens

• Novel contributions center around pre-training & workflow

BERT - Workflow

20

• Someone with lots of compute or time pre-trains a large model
• BERT uses Masked Language Modelling [MASK]

and Next Sentence Prediction [CLS]

• We download it and fine-tune on our task

Figure taken from the BERT paper

BERT++

21

• Same as with Transformer variations, there are now many BERT variants
• For many languages

• Domains like biomedical publications

• Different architectures, but similar workflow:
Roberta, Transformer-XL, XLNet, Longformer …

• Main themes for adapted architectures:
• Bigger

• More efficient

• Allowing for longer sequences (BERT is capped at 512 tokens in total)

Rogers et al. A Primer in BERTology: What we know about how BERT works https://arxiv.org/abs/2002.12327

https://arxiv.org/abs/2002.12327

Pre-Training Ecosystem

• With simple 1-word-1-vector embeddings (word2vec) sharing was as
simples as a single text file containing both vocab + weights
• We could simply load the weight matrix into bigger models

• Mostly whitespace tokenization meant very little complexity

• BERT et al. re-use requires:
• Exact model architecture (specific code and config) for hundreds of details

• Weights for 100+ modules

• Specific tokenizer rules for sub-word tokenization and special token handling

• A single text file doesn’t work here anymore …

22

HuggingFace: Transformers Library

• Started as a port of TensorFlow implementation of BERT to PyTorch

• Quickly morphed into a multi-use, multi-model, multi-framework
library
• Out-of-the-box support for: tokenization, BERT architectures, many NLP tasks

(not yet for neural re-ranking and only spotty dense retrieval*)

• Expanding to even more use cases quickly (f.e. speech recognition)

• Gained huge popularity, because it really is easy to use
• The pre-training ecosystem needs this for broad access

23
*As of April 2021; To the code: https://github.com/huggingface/transformers/

https://github.com/huggingface/transformers/

HuggingFace: Model Hub

• Not only one-way model
code, but a hub for:
• Model definitions

• Trained models

• Everyone can upload models
• Already thousands of entries

• Data is hosted by HuggingFace
• Don’t have to worry about

public storage

24
URL: https://huggingface.co/models

https://huggingface.co/models

HuggingFace: Model Hub

• Each model is packaged in
a library defined format
and uploaded & versioned
via git-lfs

• Readme (like GitHub) is
displayed as model card to
be able to explain what is
trained here

25
Our models: https://huggingface.co/sebastian-hofstaetter

https://huggingface.co/sebastian-hofstaetter

HuggingFace: Getting Started

• Getting Started is easy, load the model & tokenizer:

• Tokenize & encode some text:

• Now, we can do something with the encoded representations

26
The full example: https://github.com/sebastian-hofstaetter/neural-ranking-kd/blob/main/minimal_bert_dot_usage_example.ipynb

from transformers import AutoTokenizer, AutoModel

pre_trained_model_name = "sebastian-hofstaetter/distilbert-dot-margin_mse-T2-msmarco"

tokenizer = AutoTokenizer.from_pretrained(pre_trained_model_name)

bert_model = AutoModel.from_pretrained(pre_trained_model_name)

passage_input = tokenizer("We are very happy to show you the 🤗 Transformers library for pre-trained language models 🔥.",

return_tensors="pt")

passage_encoded = bert_model(**passage_input)

https://github.com/sebastian-hofstaetter/neural-ranking-kd/blob/main/minimal_bert_dot_usage_example.ipynb

Extractive QA

One NLP task example out of many possible using BERT

Soooo many tasks are solvable with BERT

• Original BERT paper evaluates on:
• GLUE, SQuAD, SWAG, CoNLL

• Now at ~18 thousand citations, we can assume some more are
evaluated
• As long as your text input is <512 tokens & you can pool the CLS token or

learn per-term predictions you can use BERT

• HuggingFace model Hub alone provides out-of-the-box support for
dozens of tasks & lists 200+ datasets used by the trained models.

28

Extractive Question Answering

• Given a query and a passage/document:
Select the words in the passage that answer the query
• We want to select at least 1 span with a start and end position, that we then

can extract

• Use extracted text in highlighted UI (with surrounding text), chatbot, or audio-
based assistant

• Not perfect: query type must be specific to be answerable with fixed text

29

• Differs from Generative Question Answering
• Models are tasked to create new text (with new words, more natural

conversational style)

• More complex, more potential for error and biases

Extractive QA: Datasets

• Popular datasets include: SQuAD &
NaturalQuestions
• Both are based on Wikipedia text

• SQuAD contains artificially created
queries, NQ google search queries

• Both come with fairly large training and
evaluation sets

• Many pre-trained models are
available for both

30
More datasets: https://huggingface.co/datasets?filter=task_ids:extractive-qa

Example: https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/

https://huggingface.co/datasets?filter=task_ids:extractive-qa
https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/

Extractive QA: Training

• For BERT we concatenate query and passage
• With the pre-trained special tokens

• Per term output (of BERT) of the passage
predicts if this token is a start or end token of the answer
• End tokens are trained with gold-label start positions

• Beam search can be used to find the best combination

• Loss is based on CrossEntropy of prediction vs ground-truth label
• Potentially also includes a non-answerable prediction for the passage as a

whole (SQuAD 2.0)

31
Getting Started: https://huggingface.co/transformers/task_summary.html#extractive-question-answering

https://huggingface.co/transformers/task_summary.html#extractive-question-answering

IR + QA = Open Domain QA

• Having a passage guaranteed to contain the answer is somewhat
artificial

• More realistic scenario: we have a collection, and we need to
generate candidates first with our IR system
• Often referred to as Open Domain QA or “retrieve and read”

• Can be separate systems our jointly learned
• Def. makes evaluation and analysis more complex, as man more moving parts

are involved

• Fulfills the initial idea of the immediate answer – search engine
presented in the course introduction

32

Summary: Transformers & BERT

❶

❷

❸

BERT pre-trains Transformers for easy downstream use

An open and sprawling ecosystem lowers the barrier of entry

Transformers apply self-attention to contextualize a sequence

33

❶

❷

❸

Thank You

BERT pre-trains Transformers for easy downstream use

Transformers apply self-attention to contextualize a sequence

An open and sprawling ecosystem lowers the barrier of entry

