
Computer Vision
Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine
UC Berkeley



So far…

convolutional networks: map image to output value

e.g., semantic category (“bicycle”)



Standard computer vision problems

object classification semantic segmentation
a.k.a. scene understanding

object detectionobject localization



Object localization setup

image class label (categorical)

image



Measuring localization accuracy

learned 
model

predicted bounding box

prediction score (e.g., probability)

Did we get it right?

Intersection over Union (IoU)

intersection area (I) union area (U)

IoU = I / U

Different datasets have different protocols, but one reasonable one is: correct if IoU > 0.5

If also outputting class label (usually the case): correct if IoU > 0.5 and class is correct

This is not a loss function! Just an evaluation standard



Object localization as regression

class label

cross-entropy loss

regression loss

(e.g., Gaussian log-likelihood, MSE)

➢ Very simple design
➢ Can either train jointly (multi-task), or train with 

classification first, then train regression head
➢ More or less works OK
➢ By itself, this is not the way it’s usually done!

▪ We’ll see why shortly



Sliding windows

class label

class label

What if we classify every patch in the image?



Sliding windows
could just take the box with the highest class probability

more generally: non-maximal suppression



A practical approach: OverFeat

Sermanet et al. “OverFeat: Integrated Recognition, Localization 
and Detection using Convolutional Networks.” 2013

provides a little “correction” 
to sliding window

➢ Pretrain on just classification
➢ Train regression head on top 

of classification features
➢ Pass over different regions at

different scales
➢ “Average” together the boxes 

to get a single answer



A practical approach: OverFeat

Sermanet et al. “OverFeat: Integrated Recognition, Localization 
and Detection using Convolutional Networks.” 2013

Sliding window classification outputs at 
each scale/position (yellow = bear)

Predicted box x, y, w, h at each 
scale/position (yellow = bear)

Final combined bounding box prediction 
(yellow = bear)



flatten
flatten

Sliding windows & reusing calculations
Problem: sliding window is very expensive! (36 windows = 36x the compute cost)

This looks a lot like convolution…

Can we just reuse calculations across windows?

“Convolutional classification”

flatten

these are just convolutional layers!

before: 2x fully connected layers with 4096 units

now: 2x convolutional layers with 1x1x4096 filters



Sliding windows & reusing calculations

Sermanet et al. “OverFeat: Integrated Recognition, Localization 
and Detection using Convolutional Networks.” 2013

This kind of calculation reuse is 
extremely powerful for localization 
problems with conv nets

We’ll see variants of this idea in 
every method we’ll cover today!



Summary

Building block: conv net that 
outputs class and bounding box 
coordinates

Evaluate this network at 
multiple scales and for many 
different crops, each one 
producing a probability and 
bounding box

Implement the sliding window 
as just another convolution, 
with 1x1 convolutions for the 
classifier/regressor at the end, 
to save on computation



Object detection architectures



The problem setup
Before Now

???



How do we get multiple outputs?
Sliding window: each window can be a different object

Instead of selecting the window with the highest probability 
(or merging windows), just output an object in each window 
above some threshold

Big problem: a high-scoring window probably has other
high-scoring windows nearby

Non-maximal suppression: (informally) kill off any 
detections that have other higher-scoring detections 
of the same class nearby

non-maximal maximal

Actually output multiple things: output is a list of bounding boxes

Obvious problem: need to pick number, usually pretty small
not good by itself

works great if combined



Case study: you only live once (YOLO)
look

Actually, you look a few times (49 times to be exact…)

Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection.” 2015

different output for each 
of the 7x7 (49) grid cells 
(a bit like sliding window)

use the same trick as 
before to reuse 
computation (cost is
not 49x higher!)

for each cell, output:

(confidence)

(class label)

zero if no object

some training details:

need to assign which output is “responsible” 
for each true object during training

just use the “best-fit” object in that cell 
(i.e., the one with highest IoU)

What if we have too many objects?

Well, nothing… we just miss them



CNNs + Region proposals
A smarter “sliding window”: region of interest proposals

Girschick et al. “Fast R-CNN.” 2015

This is really slow

But we already know how to fix this!



CNNs + Region proposals
A smarter “sliding window”: region of interest proposals

Girschick et al. “Fast R-CNN.” 2015

Compare this to evaluating every location:



CNNs + Region proposals
How to train region of interest proposals?

Ren et al. “Faster R-CNN.” 2015

Very similar design to 
what we saw before 
(e.g., OverFeat, YOLO), 
but now for predicting 
if any object is present 
around that location



Suggested readings

➢ Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection.” 2015
▪ Just regress to different bounding boxes in each cell
▪ A few follow-ups (e.g., YOLO v5) that work better

➢ Girschick et al. “Fast R-CNN.” 2015
▪ Uses region of interest proposals instead of sliding window/convolution

➢ Ren et al. “Faster R-CNN.” 2015
▪ Same as above with a few improvements, like region of interest proposal learning

➢ Liu et al. SSD: Single Shot MultiBox Detector. 2015
▪ Directly “classifies” locations with class and bounding box shape



Segmentation architectures



The problem setup
Before Now

Label every single pixel with its class

Actually simpler in some sense:

• No longer variable # of outputs

• Every pixel has a label

Simple solution:

“per pixel” classifier

flatten
flatten

flatten

Problem:

We want the output to 
have the same resolution 
as the input!

Not hard if we never 
downsample (i.e., zero 
padding, stride 1, no pooling), 
but that is very expensive



The problem setup
Classify every point with a class

Don’t worry for now about instances
(e.g., two adjacent cows are just one “cow blob,” 
and that’s OK for some reason)

The challenge: design a network architecture 
that makes this “per-pixel classification” problem 
computationally tractable



Fully convolutional networks

Low-res (but high-depth) processing 
in the middle integrates context

from the entire image
Up-sampling at the end turns these 
low-res feature vectors into high-res 
per-pixel predictions

Slide borrowed from Fei-Fei Li, Justin Johnson, Serena Yeung



Up-sampling/transpose convolution
Normal convolutions: reduce resolution with stride

Transpose convolutions: increase resolution with fractional “stride”

Stride = 2

Stride = 1/2 we have two sets of values here! just average them



Un-pooling

Slide borrowed from Fei-Fei Li, Justin Johnson, Serena Yeung



Bottleneck architecture

Long et al. “Fully Convolutional Networks for Semantic Segmentation.” 2014



U-Net architecture

Ronneberger et al. U-net: Convolutional networks for biomedical image segmentation. 2015

concatenate activations from conv 
layers to upsampling layers



Standard computer vision problems

object classification semantic segmentation
a.k.a. scene understanding

object detectionobject localization


