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Is Attention All We Need?



Attention
If we have attention, do we even need recurrent connections?

Can we transform our RNN into a purely attention-based model?

Attention can access every time step

Can in principle do everything that recurrence can, and more!

<START> A cute puppyUnchiotmignon

This has a few issues we must overcome:

We must fix this first



Self-Attention

shared weights at all time steps

we’ll see why this is important soon



Self-Attention

self-attention “layer”

self-attention “layer”

keep repeating until we’ve 
processed this enough

at the end, somehow decode it into 
an answer (more on this later)



From Self-Attention to Transformers
The basic concept of self-attention can be used to develop a very powerful type of 
sequence model, called a transformer

But to make this actually work, we need to develop a few additional components to 
address some fundamental limitations

1. Positional encoding

2. Multi-headed attention

3. Adding nonlinearities

4. Masked decoding

addresses lack of sequence information

allows querying multiple positions at each layer

so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?



Sequence Models with Self-Attention
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Positional encoding: what is the order?
what we see:

he hit me with a pie

what naïve self-attention sees:
he

hit me

pie

with
a

a pie hit me with he

a hit with me he pie

he pie me with a hit

most alternative orderings are nonsense, but some change the meaning

in general the position of words in a sentence carries information!

Idea: add some information to the representation at the 
beginning that indicates where it is in the sequence!

some function



Positional encoding: sin/cos

This is not a great idea, because absolute position is less important than relative position

I walk my dog every day every single day I walk my dog The fact that “my dog” is right after “I walk” is 
the important part, not its absolute position

we want to represent position in a way that tokens with similar relative position have similar positional encoding

Idea: what if we use frequency-based representations?

dimensionality 
of positional 
encoding

“even-odd” indicator

“first-half vs. second-half” indicator



Positional encoding: learned
Another idea: just learn a positional encoding

Different for every input sequence

The same learned values for every sequence

but different for different time steps

How many values do we need to learn?

dimensionality max sequence length

+ more flexible (and perhaps more optimal) than sin/cos encoding

+ a bit more complex, need to pick a max sequence length (and can’t generalize beyond it)



How to incorporate positional encoding?

Simple choice: just concatenate them

More often: just add after embedding the input

some learned function (e.g., some fully connected 
layers with linear layers + nonlinearities)
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Multi-head attention
Since we are relying entirely on attention now, we might want to incorporate more than one time step

because of softmax, this will 
be dominated by one value

hard to specify that you want two 
different things (e.g., the subject 
and the object in a sentence)



Multi-head attention
Idea: have multiple keys, queries, and values for every time step!

around 8 heads seems to work 
pretty well for big models
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Self-Attention is Linear

non-linear weightslinear transformation

Every self-attention “layer” is a linear 
transformation of the previous layer 
(with non-linear weights)

This is not very expressive



Alternating self-attention & nonlinearity

self-attention “layer”

self-attention “layer”

just a neural net applied at every position 
after every self-attention layer!

Sometimes referred to as “position-
wise feedforward network”

We’ll describe some specific 
commonly used choices shortly
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Self-attention can see the future!

self-attention “layer”

A crude self-attention “language model”: (in reality, we would have many alternating 
self-attention layers and position-wise 
feedforward networks, not just one)

Big problem: self-attention at step 1 can look at the value 
at steps 2 & 3, which is based on the inputs at steps 2 & 3

At test time (when decoding), the inputs at steps 2 & 3 will 
be based on the output at step 1…

…which requires knowing the input at steps 2 & 3



Masked attention

self-attention “layer”

A crude self-attention “language model”: At test time (when decoding), the inputs at steps 2 & 3 will 
be based on the output at step 1…

…which requires knowing the input at steps 2 & 3

Must allow self-attention into the past…

…but not into the future



Implementation summary

self-attention “layer”

self-attention “layer” ➢We can implement a practical 
sequence model based entirely on 
self-attention

➢Alternate self-attention “layers” with 
nonlinear position-wise feedforward 
networks (to get nonlinear 
transformations)

➢Use positional encoding (on the input 
or input embedding) to make the 
model aware of relative positions of 
tokens

➢Use multi-head attention
➢Use masked attention if you want to 

use the model for decoding



The Transformer



Sequence to sequence with self-attention

self-attention “layer”

self-attention “layer” ➢There are a number of model designs 
that use successive self-attention and 
position-wise nonlinear layers to 
process sequences

➢These are generally called 
“Transformers” because they transform 
one sequence into another at each layer
▪ See Vaswani et al. Attention Is All You 

Need. 2017

➢The “classic” transformer (Vaswani et al. 
2017) is a sequence to sequence model

➢A number of well-known follow works 
also use transformers for language 
modeling (BERT, GPT, etc.)



The “classic” transformer
As compared to a sequence 
to sequence RNN model

self-attention “layer”

position-wise encoder

position-wise nonlinear 
network
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masked self-attention

position-wise encoder

position-wise nonlinear 
network

cross attention

position-wise nonlinear 
network

re
p

ea
te

d
 N

ti
m

es

we’ll discuss 
how this bit 
works soon

position-wise softmax



Combining encoder and decoder values
“Cross-attention”

Much more like the standard attention 
from the previous lecture

self-attention “layer”

position-wise encoder

position-wise nonlinear 
network

re
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masked self-attention

position-wise encoder

position-wise nonlinear 
network

cross attention

cross attention 
output

in reality, cross-attention is 
also multi-headed!



One last detail: layer normalization

Main idea: batch normalization is very helpful, but hard to use with sequence models

Sequences are different lengths, makes normalizing across the batch hard

Sequences can be very long, so we sometimes have small batches

Simple solution: “layer normalization” – like batch norm, but not across the batch

Batch norm Layer norm



Putting it all together
The Transformer

Vaswani et al. Attention Is All You Need. 2017.

concatenates attention from all heads

essentially a residual connection with LN

2-layer neural net at each position

6 layers, each with d = 512

Decoder decodes one position at a 
time with masked attention

residual connection with LN

residual connection with LN

residual connection with LN

multi-head cross attention

same as encoder only masked



Why transformers?
Downsides:

- Attention computations are technically O(n2)

- Somewhat more complex to implement (positional encodings, etc.)

Benefits:

+ Much better long-range connections

+ Much easier to parallelize

+ In practice, can make it much deeper (more layers) than RNN

The benefits seem to vastly outweigh the downsides, and 
transformers work much better than RNNs (and LSTMs) in 
many cases

Arguably one of the most important sequence modeling 
improvements of the past decade



Why transformers?

much faster training

In practice, this means we can use 
larger models for the same cost

larger model = better performance

great translation results

Vaswani et al. Attention Is All You Need. 2017.
Liu et al. Generating Wikipedia by summarizing 
long sequences. 2018.

previous state of the art seq2seq model

lower is better (this metric is similar to 1/likelihood)

Text summarization

We’ll learn more about the power of transformers 
as language models next time!


