Lecture 3

EVERYTHING YOU DIDN’T WANT TO KNOW ABOUT
LM ARCHITECTURE AND TRAINING
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Outline and goals

*“» Quick recap of the ‘standard’ transformer (what you implement)
“» What do most of the large LMs have in common?

“» What are common variations to the architecture / training process?

Today’s theme: the best way to learn is hands-on experience
the second best way is to try to learn from others’ experience



Starting point: the ‘original’ transformer
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Review: choices in the standard transformer

Position embedding: sines and cosines

PE (pos,2i) = sin(pos/ 100002i/dmode1)
PE(pos,2i+1) = cos(pos/ 100002/ dmoe!)

FFN: RelLU

FFN(CL‘) = max(O, .’L‘Wl + bl)Wz + bz

Norm type: post-norm, LayerNorm



What you implemented - simple, modern variant
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Differences:

LayerNorm is in front of the block
*  Absolute position embeddings

* FFlayers use GeLU, not ReLU

* Linear layers (and layernorm) have no
bias (constant) terms

FFN(x) := GELU(xW)W,

Why did we pick these?
What should you pick?



What LLaMA (70B) does - yet more variations

LLAMA Differences from your implementation:
ARCHITECTURE

* Grouped Query Attention (GQA)

= - Rotary embeddings (??)
) ;NX
e . SWiGLU (??)

: ®Ro(ry

a
Positional Encodings

What even are these things?

Zoumana K.

Fig from : https://www.youtube.com/watch?v=ISNdQcPhsts



Learn from the many other models (and papers) out there

Lir

Original transformer arxiv.org BPE 37000 |LayerNorm Sine
GPT cdn.openai.com, BPE 40257 | LayerNorm Absolute
GPT2 cdn.openai.com, BPE 50257 |LayerNorm Sine
T5 (11B) arxiv.org SentencePiece 32128  RMSNorm Relative
GPT3 (175B) arxiv.org BPE 50257 |LayerNorm Sine
mT5 arxiv.org SentencePiece 250000  RMSNorm Relative
T5 (XXL 11B) v1.1 { github.com SentencePiece 32128 RMSNorm Relative
Gopher (280B) arxiv.org SentencePiece 32000 |RMSNorm Relative
Anthropic LM (not claude) arxiv.org BPE 65536
LaMDA arxiv.org BPE 32000 Relative GeGLU
GPTJ i huggingface.co, BPE 50257 [LayerNorm Parallel RoPE GeLU
Chinchilla arxiv.org SentencePiece 32000 RMSNorm Serial Relative RelLU

PaLM (540B) arxiv.org SentencePiece 256000  RMSNorm Parallel RoPE SwiGLU

OPT (175B) arxiv.org BPE 50272 |LayerNorm Serial

Absolute ReLU
BLOOM (175B) arxiv.org BPE 250680 |LayerNorm Serial AliBi GelLU
GPT-NeoX arxiv.org BPE 50257 |LayerNorm Parallel RoPE GelLU
GPT4 ¥ OPEN arxiv.org BPE 100000

LLaMA (65B) arxiv.org BPE 32000 RMSNorm SwiGLU

LLaMA2 (70B) arxiv.org BPE 32000 RMSNorm SwiGLU
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Mistral (7B) arxiv.org BPE 32000 RMSNorm SwiGLU

We will talk through many major architecture and hyperparameter variants.

What do all these models have in common? What parts vary? What can we learn from this?



What are we going to cover?

Common architecture variations
* Activations, FFN

* Attention variants

* Position embeddings

Hyperparameters that (do or don’t) matter
 Whatis ff_dim? Do multi_head dims always sum to model_dim?

Tokenization variants (and pitfalls)
* How many tokens?

Optimization



Let’s think about the core architecture piece
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Pre-vs-post norm

The one thing everyone agrees on (in 2024)
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Set up LayerNorm so that it doesn’t affect the
main residual signal path (on the left)

Almost all modern LMs use pre-norm (but BERT was post-norm)

(One somewhat funny exception - OPT350M. | don’t know why this is post-norm)



Pre-vs-post-norm, the data
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Pre-vs-post norm, explanations?

Gradient attenuation [Xiong 2020] Gradient spikes [Salazar and Ngyuen]
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Original stated advantage- removing warmup.
Today - stability and larger LRs for large networks



LayerNorm vs RMSNorm

Original transformer: LayerNorm - normalizes
the mean and variance across d,,;pder

_ oz E[x]
\/Var|z] + €

Y * v+ B

Many modern LMs: RMSNorm - does not
subtract mean or add a bias term

X

\/||x||§+e

y = *Y

Notable models:

GPT3/2/1, OPT, GPT-J, BLOOM

Notable models:

LLaMA-family, PaLM, Chinchilla, T5



Why RMSNorm?

Modern explanation - it’s faster (and just as good).

 Fewer operations (no mean calculation) r — E[m]

 Fewer parameters (no bias term to store) Yy = \/V [ ] n *x v+
ar|x €

Does this explanation make sense?

Operator class % flop

A Tensor contraction  99.80
[ Stat. normalization 0.17
O Element-wise 0.03

Matrix multiplies are the vast majority of FLOPs (and memory)

[lvanov et al 2023]



Why RMSNorm (2)

Important lesson: FLOPS are not runtime! (we will discuss this in far more detail later)

X A Ter
. . - 0 No

Operator class % flop % Runtime O Ele

A Tensor contraction  99.80 61.0
[ Stat. normalization 0.17 25.5
O Element-wise 0.03 13.5

RMSNorm can be faster because
it has fewer memory accesses

Left top (743G”) is FLOPS
Right top (“153”) is the FLOP-to-memory ratio

[lvanov et al 2023]



RMSNorm - validation

RMSNorm runtime (and surprisingly, perf) gains have been seen in papers

Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ | WMT EnDe
Vanilla Transformer 223M 11.1T 350  2.182+0.005 1.838 71.66 17.78 23.02 | 26.62
RMS Norm 223M 11.1T 3.68  2.167 4 0.008 1.821 75.45 17.94 24.07 27.14
Rezero 223M 11.1T 3.51  2.262+0.003 1.939 61.69 15.64 20.90 26.37
Rezero + LayerNorm 223M 11.1T 3.26  2.223+0.006 1.858 70.42 17.58 23.02 26.29
Rezero + RMS Norm 223 M 11.1T 3.34  2.22140.009 1.875 70.33 17.32 23.02 26.19
Fixup 223 M 11.1T 295  2.382+0.012 2.067 58.56 14.42 23.02 26.31

Narang et al 2020



More generally: dropping bias terms

Most modern transformers don’t have bias terms.

Original Transformer:

FFN(z) = max(0,zW1 + b)) W5 + by

Most implementations (if they’re not gated):

FFN(X) = 0(xW1)W2

Reasons: memory (similar to RMSnorm) and optimization stability



LayerNorm: recap

* Basically everyone does pre-norm.
* Intuition - keep the good parts of residual connections
* Observations - nicer gradient propagation, fewer spike

* Most people do RMSnorm
* In practice, works as well as LayerNorm
* But, has fewer parameters to move around, which saves on wallclock time

* People more generally drop bias terms since the compute/param tradeoffs are not
great.



Activations

A whole zoo of activations ..

RelLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU

What are these things? What do people use? Does it matter?



A few of the common activations

RelLU : T Notable models:
FF(x) = max(0,xW;) W,

Original transformer, T5,
Gopher, Chinchilla, OPT

|||||

GelLU
FF(x) = GELU(xW )W, j Notable models:
GELU(x) == x®(x) 2

. GPT1/2/3, GPTJ, GPT-Neox,
) BLOOM

|||||

Notable models:

SwiGLU / GeGLU (next slide..) Llama. PaLM. LaMDA. T5

v1l.l, mT5



Gated activations (*GLU)

GLUs modify the “first part’ of a FF layer

FF(x) = max (0, xWW;) W,
Instead of a linear + ReLU, augment the above with an (entrywise) linear term
max (0, xIW;) - max(0,xW;) ® (xV)

This gives the gated variant (ReGLU) - note that we have an extra parameter (V)

FFReGLU(x) = (max(0,xW;) ® xV) W,



Gated variants of standard FF layers

GeGLU Notable models:

T5v1.1, mT5, LaMDA
FFNgecLu(z, W, V, Ws) = (GELU (W) ® V)W,

. . Notable models:
SwiGLU (swish is x * sigmoid(x))

LLaMa, PaLM
FFNSwiGLU (.’I}, VV, ‘/, Wz) = (SWiSh1 (a:W) &® iUV)Wz

Note: Gated models use smaller dimensions for the ds¢ by 2/3



Do gated linear units work?

Yes, fairly consistently so.

Score | CoLA SST-2
Average | MCC  Acc

FFNReLu 83.80 | 51.32 94.04
FFNgeLU 83.86 53.48 94.04
FFNswish 83.60 | 49.79  93.69
FFNGLy 8420 | 49.16 94.27
FFNgEGLU 84.12 | 53.65  93.92
FFNsilinear 83.79 51.02 94.38
FFNgwicLU 84.36 51.59  93.92
FFNRecLU 84.67 | 56.16 94.38
[Raffel et al., 2019] 83.28 53.84  92.68
ibid. stddev. 0.235 1.111  0.569

Shazeer 2020



Do gated linear units work (2)?

Yes, with other works corroborating Shazeer 2020

Model Params Ops Step/s Early loss Final loss SGLUE XSum WebQ
Vanilla Transformer 223M 11.1T 3.50 2.182 + 0.005 1.838 71.66 17.78 23.02
GeLU 223M 1118 3.58 2.179 +0.003 1.838 75.79 17.86 25.13
Swish 223M 11.1T 3.62 2.186 4+ 0.003 1.847 73.77 17.74  24.34
ELU 223M 11.1T 3.56 2.270 £ 0.007 1.932 67.83 16.73 23.02
GLU 223M 111 3.59 2.174 £ 0.003 1.814 74.20 17.42 24.34
GeGLU 223M 11.1T 3.55 2.130 £ 0.006 1.792 75.96 18.27  24.87
ReGLU 223M 11.1T 3.57 2.145 £ 0.004 1.803 76.17 18.36  24.87
SeLU 223M 11 1T 3.55 2.315 £ 0.004 1.948 68.76 16.76 22.75
SwiGLU 223M 11.1T 3.53 2.127 £0.003 1.789 76.00 18.20 24.34
LiGLU 223M 11.1T 3.59 2.149 £ 0.005 1.798 75.34 17.97 24.34
Sigmoid 223M 1117 3.63 2.291 £0.019 1.867 74.31 17.51 23.02
Softplus 223M 11.1T 347 2.207 +£0.011 1.850 72.45 17.65  24.34

Narang et al 2020



Gating, activations

* Many variations (ReLU, GeLU, *GLU) across models.
* *GLUisn’t necessary for a good model (see GPT3)

* Butevidence points towards somewhat consistent gains from Swi/GeGLU



Serial vs Parallel layers

Normal transformer blocks are serial - they compute attention, then the MLP
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Could we parallelize the transformer block?



Parallel layers

A few models (GPTJ, PaLM, GPT-NeoX) do parallel layers. Originally in GPT-J

Parallel Layers — We use a “parallel” formulation in each Transformer block (Wang & Komatsuzaki,
2021), rather than the standard “serialized” formulation. Specifically, the standard formulation can be
written as:

y = x + MLP(LayerNorm(z + Attention(LayerNorm(x)))

Whereas the parallel formulation can be written as:
y = z + MLP(LayerNorm(z)) + Attention(LayerNorm(z))

The parallel formulation results in roughly 15% faster training speed at large scales, since the MLP
and Attention input matrix multiplications can be fused. Ablation experiments showed a small quality
degradation at 8B scale but no quality degradation at 62B scale, so we extrapolated that the effect of
parallel layers should be quality neutral at the 540B scale.

If implemented right, LayerNorm can be shared, and matrix multiplies can be fused



Summary: architectures

Pre-vs-post norm:
* Everyone does pre-norm (except OPT350M), likely with good reason.

Layer vs RMSnhorm:
*  RMSnorm has clear compute wins, sometimes even performance

Gating:
* GLUs seem generally better, though differences are small

Serial vs parallel layers:
* No extremely serious ablations, but has a compute win.



Many variations in position embeddings

Sine embeddings: add sines and cosines that enable localization Notable models:

Embed(x,i) = vy + PEpqs Original transformer

PE(pos,Qi) = Sin(pos/100002i/dmode1)
PE(pos,2i+1) = cos(pos/ 100002i/dmode1)

Absolute embeddings: add a position vector to the embedding Notable models:
Embed(x,i) = v, + u; GPT1/2/3,0PT
Relative embeddings: add a vector to the attention computation Notable models:
K KN\T . .
;W9 (z, WX + a;;) T5, Gopher, Chinchilla

Ea V.

Rope embeddings (next slides..) Notable models: GPTJ, PaLM, LLaMA



ROPE: rotary position embeddings

High level thought process: a relative position embedding should be some f(x, i) s.t.
(fC, D, f, D)) =g(xy.i—])

That is, the attention function only gets to depend on the relative position (i-j). How do
existing embeddings not fulfill this goal?

e Sine: Has various cross-terms that are not relative
(Embed (x,i), Embed(y,i)) = (vy, vy) + (PE;, vy) ...

» Absolute: obviously not relative
oW (z;,WE + of)T

ij
V.

* Relative embeddings: ¢;; = is not an inner product



ROPE: rotary position embeddings

How can we solve this problem?
« We want our embeddings to be invariant to absolute position
*  We know that inner products are invariant to arbitrary rotation.

we we
know
know we know
\L—-\/
Embedding Embedding

Position independent

embedding ’ “we know that

“of course we know’

Rotate by ‘2 positions’ Rotate by ‘0 positions’



ROPE: rotary position embeddings

There are many rotations, which one do you pick?
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[Su et al 2021]

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)



The actual ROPE math

Multiply with sines and cosines

Framy(@m,m) = RE W g 5y (14)
( cosmb; —sinmb; 0 0 0 0 \
sinmf;  cosmb; 0 0 0 0
0 0 cosmbfy —sinmbo 0 0
Rd@,m _ 0 0 sinmfs  cos ?77,92 0 0 (15)
6 0 O O -+ COs n.wd s2  —sin ;an /2
K 0 0 0 0 sinmbgo  cosmby/o

Difference with sine embeddings - not additive, no cross terms



Implementation and code for RoPE

query_states = self.q_proj(hidden_states)
key states = self.k_proj(hidden_states)

value_states = self.v_proj(hidden_states)

Usual # Flash attention requires the input to have the shape

attention stuff # batch_size x seq_length x head_dim x hidden_dim

# therefore we just need to keep the original shape

query_states = query_states.view(bsz, g_len, self.num_heads, self.head_dim).transpose(1, 2)

key_ states = key_states.view(bsz, q_len, self.num_key_ value_heads, self.head_dim).transpose(1, 2)

value_states = value_states.view(bsz, q_len, self.num_key value_heads, self.head_dim).transpose(1, 2)
Get the RoPE

rnatrn<cos/sn1 cos, sin = self.rotary_emb(value_states, position_ids)

query_states, key_states = apply rotary pos_emb(query_states, key states, cos, sin)

Multiply
query/key inputs

Same stuff as the usual multi-head self attention below

Note: embedding at each attention operation to enforce position invariance



Hyperparameters

Transformer hyperparameter questions you might have had in 224n..

* How much bigger should the feedforward size be compared to hidden size?
 How many heads, and should num_heads always divide hidden size?

And other model setting questions
* Do people even regularize these huge LMs?
* How do people scale these models - very deep or very wide?



Surprising (?) consensus hyperparameter 1

Feedforward - model dimension ratio.

FFN(z) = max(0,zW7 + by) W5 + by

There are two dimensions that are relevant - the feedforward dim (dfs) and model dim
(dmoder)- What should their relationship be?

dir = 4 dpodel

This is almost always true. There’s just a few exceptions.



Exception #1 - GLU variants

Remember that GLU variants scale down by 2/3. This means most GLU variants have

der = gdmodel. This is mostly what happens. Some notable such examples.

Model | dyy/dmoae

PaLM 4
Mistral 7B 3.5
LLaMA-2 70B 3.5
LLaMA 70B 2.68
Qwen 14B 2.67
DeepSeek 67B 2.68
Yi 34B 2.85
T5vl.1 2.5

Models are roughly in this range, though PaLM, LLaMA2 and Mistral are slightly larger



Exception #2 - T5

As we have (and will) see, most LMs are have boring, conservative hyperparameters.
One exception is T5 [Raffel et al 2020] which has some very bold settings.

In particular, for the 11B model, they set

dmodel = 1024

For an astounding 64-times multiplier.

for “11B” we use dg = 65,536 with 128-headed attention
producing a model with about 11 billion parameters. We chose to scale up dg
specifically because modern accelerators (such as the TPUs we train our models
on) are most efficient for large dense matrix multiplications like those in the
Transformer’s feed-forward networks.



Why this range of multipliers?

Empirically, there’s a basin between 1-10 where this hyperparameter is near-optimal

10%

—*— Nhead =8

8% | —* model/Nhead = 64
6%
4%

2%

Loss Increase

0%

100 10!
Feed-Forward Ratio (dif / dmodel)
50M Parameters

[Kaplan+2020]



What can we learn from the model-dim hyperparam?

* The ‘default’ choices of dff = 4d o4 and dfp = 2.66d 0401 have worked well for
nearly all modern LLMs.

* ButT5does show that even radical choices of dff = 64dypge; Can work. This
hyperparameter choice isn’t written in stone.

* That said, T5 has a follow-up model (T5 v1.1) thatis ‘improved’ and uses a much
more standard 2.5 multiplier on GeGLU, so the 64-times multiplier is likely
suboptimal.



Surprising (?) consensus hyperparameter 2

Head-dim*num-heads to model-dim ratio. As a reminder, slide from 224n.

Multi-head self-attention is computationally efficient

* Even though we compute h many attention heads, it’s not really more costly.

« We compute XQ € R™4, and then reshape to R™"*4/h_(Likewise for XK, XV .)
* Then we transpose to R?™™%4/R: now the head axis is like a batch axis.
* Almost everything else is identical, and the matrices are the same sizes.

This doesn’t have to be true: we can have head-dimensions > model-dim / num-heads.

But most models do follow this guideline



How many heads, whats the model dim?

Some examples of this hyperparameter

—mm

GPT3
T5
T5vl1.1
LaMDA
PaLM
LLaMA2

128
64
128
48
64

128
64

128
258
128

12288

1024 16
4096 1
8192 2
18432 1.48
8192 1

Most models have ratios around 1 - notable exceptions by some google models.



Evidence for 1-1 ratio?

There have been papers written against the 1-1 ratio [Bhojanapalli et al 2020]
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But we don’t seem to be seeing significant ‘low rank bottlenecks’ in practice..



Aspect ratios

Should my model be deep or wide? How deep and how wide?

Most models are surprisingly consistent on this one too!

Model | dumodet/Miayer

BLOOM 205

T5v1.1 171

PaLM (540B) 156
Sweet spot? GPT3/OPT/Mistral/Qwen 128

LLaMA / LLaMA2 / 102

Chinchila

T5 (11B) 43

GPT2 33



Considerations about aspect ratio

Extremely deep models are harder to parallelize

The Limits of Depth vs Width We note an obvious limitation with our advice. Scaling depth has
an obvious limiter, i.e., they are non-parallelizable across different machines or devices and every
computation has to always wait for the previous layer. This is unlike width, which can be easily
parallelizable over thousands or hundreds of thousands of devices. Within the limitation of scaling

[Tay et al 2021]

forward

< < <

‘backward




Evidence on aspect ratio scaling
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Dropout and other regularization

Do we need regularization during pretraining?

Arguments against:

There is a lot of data (trillions of tokens), more than parameters.
SGD only does a single pass on a corpus (hard to memorize)

This is all quite reasonable.. but what do people do in practice?



Dropout and weight decay in practice

Original transformer 0.1 0
GPT2 0.1 0.1
T5 0.1 0

Many older models used
GPT3 0.1 0.1 dropout during pretraining
T5vl.1 0 0

Newer models (except Qwen) rely
PaLM 0 (variable) only on weight decay
OPT 0.1 0.1
LLaMA 0 0.1
Qwen 14B 0.1 0.1

* Most of the times papers just don’t discuss dropout. On open models, this closely matches not doing dropout.
This may not be true of closed models.



ik
Why weight decay LLMs?

[Andriushchenko et al 2023] has interesting observations about LLM weight decay
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Training loss

It’s not to control overfitting Weight decay interacts with learning rates (cosine schedule)



Summary: hyperparameters

Feedforward
* Factor-of-4 rule of thumb (8/3 for GLUs) is standard (with some evidence)

Head dim
« Head dim*Num head =D model is standard - but low to no validation

Aspect ratio
* Widerange of ‘good’ values (100-200). Systems concerns dictate the value

Regularization
* Youstill ‘regularize’ LMs but its effects are primarily on optimization dynamics



Tokenizers

The non-google world uses BPE. Google uses the SentencePiece library, which
(sometimes) refers to a non-BPE subword tokenizer

Original BPE
transformer
GPT 1/2/3 BPE

T5/mT5/T5v1.l1  SentencePiece (Unigram)
Gopher/Chinchilla  SentencePiece (??)
PaLM SentencePiece (7?)

LLaMA BPE

Important property - all of these tokenizers are invertible



Sentencepiece

Open-source library with many subword tokenizers

Feature SentencePiece subword-nmt WordPiece
Supported algorithm BPE, unigram, char, word BPE BPE*
0sSs? Yes Yes Google internal
Subword regularization Yes No No
Python Library (pip) Yes No N/A

C++ Library Yes No N/A
Pre-segmentation required? No Yes Yes
Customizable normalization (e.g., NFKC) Yes No N/A
Direct id generation Yes No N/A

We will talk a bit about normalization and unigram subword tokenization



BPE and Unigram subword tokenizers

Algorithm 2 Unigram LM (Kudo, 2018)

Algorithm 1 Byte-pair encoding (Sennrich et al., 1: Input: set of strings D, target vocab size k
2016; Gage, 1994) 2: procedure UNIGRAMLM(D, k)
1: Input: set of strings D, target vocab size k 3 V' < all substrings occurring more than
2: procedure BPE(D, k) 4: once in D (not crossing words)
3 V < all unique characters in D 5: while |V|.> k do > Prune tokens
4 (about 4,000 in English Wikipedia) 6: Fit unigram LM 6 to D
5. while |V| < k do > Merge tokens 7k fort € V do 1 Estimate token ‘loss’
6 tr,tr < Most frequent bigram in D 8: Ly < po(D) — pg (D)
7 tapw < tr +tr > Make new token 9: where ¢’ is the LM without token ¢
8 V & W + [bww] 10: end for .
9 Replace each occurrence of ¢, tg in L Remove m1n(|V| — k, [a[V]]) of the
10: D with tygw 12: tokens ¢ with highest L; from V,
11: entl while 13: where « € [0, 1] is a hyperparameter
12 return V 14 end while

15 Fit final unigram LM 6 to D
16: return V, 0
17: end procedure

13: end procedure

BPE is ‘bottom-up’ (merge characters). Unigram is ‘top-down’ (prune substrings)



Unigram tokenizers

Original:
BPE:
Uni. LM:

furiously Original: tricycles Original:  nanotechnology
_fur iously BPE: _t ric y cles BPE: _n an ote chn ology
_fur ious ly Uni.LM: _tri cycle s Uni. LM: _nano technology

Original: Completely preposterous suggestions
BPE: _Comple t ely _prep ost erous _suggest ions

Unigram LM: _Complete ly _pre post er ous _suggestion s
Original: corrupted Original: 1848 and 1852,
BPE: _cor rupted BPE: 184 8 _and _185 2,
Unigram LM: _corrupt ed Unigram LM: 1848 _and _1852 ,
Original [ 13AE I I N TW 5,
BPE i M 1% 2 BrR3Ininsg

Unigram LM f& X % % iz BInNTnwg .

Gloss magnetism (top.) various ways in  classification is done

Translation Magnetism is classified in various ways.

Some (Bostrom and Durrett 2020) have argued that BPE produces less semantic tokens.

.. But BPE based LMs do work fine - the transformer on top can do quite a bit.



NFKC normalization

There are many characters that are different in Unicode but look very similar

Roman ‘A’ Fullwidth ‘A’
A A

Some processing systems (e.g. sentencepiece) will NFKC normalize texts - with pros and cons

Source NFD NEC NFKD NFKC
i : f fi f 1 f i

FBO1 FBO1 FBO1 0085 0089 0085 0069
5 5

22 = 2 2 2 55 25

0032 2075 0032 2075 0032 2075 0032 0035 0032 0035

f o { o}e f Q Sob& §

1E9B 0323 017F 0323 0307 1E9B 0323 0073 0323 0307 1E69



Whitespace and number related hacks

Multi-whitespace tokenization (GPT-NeoX) Individual digit tokenization (LLaMA/DeepSeek)
GPT-2

def| fibRed/(n] :k—
if] of < 2:k . . .

T[T returd o5 Tokenizer. We tokenize the data with the byte-
elsef:( . _ pair encoding (BPE) algorithm (Sennrich et al.,
[11] returd ¢itRed(®-[ 4 ¢ibRed(HHD) 2015), using the implementation from Sentence-

55 tokens Piece (Kudo and Richardson, 2018). Notably, we
GPT-NeoX-20B split all numbers into individual digits, and fallback
def] TitRed (@ to bytes to decompose unknown UTF-8 characters.
if| o < 2:k
return| n—
felsel:
return fibRed(n-1D[ 4 fibRec|(n-2)|

39 tokens



What are typical vocabulary sizes?

Monolingual models - 30-50k vocab Multilingual / production systems 100-250k
T I
Original 37000 250000
transformer
PaLM 256000
GPT 40257
GPT4 100276
GPT2/3 50257
BLOOM 250680
T5/T5v1.1 32128
DeepSeek 100000
LLaMA 32000
Qwen 15B 152064
Yi 64000

Monolingual vocabs don’t need to be huge, but multilingual ones do



Tokenizer: summary

* Everyone uses invertible subword tokenizers (BPE, Unigram) for good reason
* NFKC normalization is a double edged sword (2”5) and many models don’t use it

* For math and code, careful manual handling of whitespace and numbers can help



Attention heads

Most models don’t touch the attention head at all with a few minor exceptions..

GQA / MQA : Saving inference costs by reducing the number of heads

Sparse or sliding window attention (GPT4/Mistral): restricting the attention pattern
to reduce compute cost



GQA/MQA - Reducing attention head cost

Let’s think about the compute involved for attention
3 sets of all pairs of

‘ =  XQKTXT attention scores!

\
LR

softmax| XQKTXT | xyv = =

P output € R**4
mix

X softmax projection
Total arithmetric operations (bnd?), total memory accesses (bnd + bhn? + d?)

-1
Arithmetic intensity is high O (G + i) ) - we can keep our GPUs running



GQA/MQA - Reducing attention head cost

What about the incremental case when we generate text?
Key difference: can’t parallelize the generation process - needs to be step by step

In this case - we need to incrementaly re-compute/update attention via the ‘KV cache’

Step 1

Q KT QK" \ Attention
5 Value Token 1 I | Token 1
$ .
S x5 = x -
S 2
(1, emb_size) (emb_size, 1) (1M (1, emb_size) (1, emb_size)
Q K" QK" Y Attention
= Value Token 1 | | Token 1
2
S o
§E x |2 - x =
& ]
(1, emb_size) (emb_size, 1) 1,1 (1, emb_size) (1, emb_size)

D Values that will be masked . Values that will be taken from cache

[Animation from https://medium.com/@joaolages/kv-caching-explained-276520203249]



GQA/MQA - Reducing attention head cost
What’s the incremental arithmetic intensity?

X projection
Total arithmetric operations (bnd?), total memory accesses (bn?d + nd?)

Arithmetic intensity is not good 0 <(d >

n  1\71
—+ —) ) - need large batches + short seq length

(n) or big model dimensions (d)

Is there some way around this? The n/d term is difficult to reduce.



MQA - just have fewer key dimensions.

Key idea - have multiple queries, but just one dimension for keys and values

Embedded input sequence | QKV projection + split
Cache current token )(Shared) | | V (shared) | Q (per head) D

K Cache

-

" broadcast \/——>/

SSenee Dot product attention

/ { broadcast ——>1 (per head)

V Cache

output projection, ...

We have much fewer items to move in and out of memory (KV Cache)

-1
Total memory access (bnd + bn?k + nd?), Arithmetic intensity O ((% + % + %) )

[figure from https://blog.fireworks.ai/multi-query-attention-is-all-you-need-db072e758055]



Recent extension - GQA

Don’t go all the way to one dimension of KV - have fewer dims

Multi-head Grouped-query Multi-query
Values U U D [:|
Keys D |:| U D
0 i e e o s e e T

A

Simple knob to control expressiveness (key-query ratio) and inference efficiency




Does MQA hurt? Sometimes..

Small PPL hit w/ MQA [Shazeer 2019] Low/no hit w/ GQA [Ainslie 2023]
([}
ol .GQ Axx  MHAXXL |
Table 3: Billion-Word LM Benchmark Results. £ 46.5 MQA-XXL i
&

Attention h di,d, dys | dev-PPL 46 |- ®. ... R
multi-head 8 128 8192 | 29.9 e |
multi-query 8 128 9088 30.2 0 0.5 1 1.5
multi-head 1 128 9984 31.2 Time per sample (ms)
multi-head 2 64 9984 31.1
multi-head 4 32 9984 31.0 T T T T
multi-head 8 16 9984 30.9

Time per sample (s)

GQA groups




Sparse / sliding window attention

Attending to the entire context can be expensive (quadratic).

Build sparse / structured attention that trades off expressiveness vs runtime (GPT3)

MM - R e R

[ [

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)

[Child et al 2019]



Sliding window attention

Another variation on this idea - sliding window attention

The cat sat on the The cat sat on the window size
B
The HERREERRR
cat
- Layers
on
Inmm
the
Tokens ‘
Vanilla Attention Sliding Window Attention Effective Context Length

Just use the main part of the strided pattern - let depth extend effective context (Mistral)



Many aspects (arch, hparams) of transformers are in common across the big LMs

Original transformer arxiv.org BPE 37000 |LayerNorm Sine

GPT cdn.openai.com, BPE 40257 | LayerNorm Absolute
GPT2 cdn.openai.com, BPE 50257 |LayerNorm Sine
T5 (11B) arxiv.org SentencePiece 32128 | RMSNorm Relative
GPT3 (175B) arxiv.org BPE 50257 |LayerNorm Sine
mT5 arxiv.org SentencePiece 250000 RMSNorm Relative
T5 (XXL 11B) v1.1 { github.com SentencePiece 32128 RMSNorm Relative
Gopher (280B) arxiv.org SentencePiece 32000 RMSNorm Relative
Anthropic LM (not claude) arxiv.org BPE 65536
LaMDA arxiv.org BPE 32000 Relative GeGLU
GPTJ i huggingface.co, BPE 50257 [LayerNorm Parallel RoPE GeLU
Chinchilla arxiv.org SentencePiece 32000 RMSNorm Serial Relative RelLU

PaLM (540B) arxiv.org SentencePiece 256000  RMSNorm Parallel RoPE SwiGLU

OPT (175B) arxiv.org BPE 50272 |LayerNorm Serial

Absolute ReLU
BLOOM (175B) arxiv.org BPE 250680 |LayerNorm Serial AliBi GelLU
GPT-NeoX arxiv.org BPE 50257 |LayerNorm Parallel RoPE GelLU
GPT4 arxiv.org BPE 100000

LLaMA (65B) arxiv.org BPE 32000 RMSNorm SwiGLU

LLaMA2 (70B) arxiv.org BPE 32000 RMSNorm SwiGLU
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Mistral (7B) arxiv.org BPE 32000 RMSNorm SwiGLU

Major differences? Position embeddings, activations, tokenization



