
Lecture 3

CS336
Tatsu H

E VERYTH ING  YOU  D IDN ’ T  WANT  TO  KNOW  ABOUT
L M  ARCH I TECTURE  AND  TRA IN ING



Outline and goals

v Quick recap of the ‘standard’ transformer (what you implement)

v What do most of the large LMs have in common?

v What are common variations to the architecture / training process?

Today’s theme: the best way to learn is hands-on experience
the second best way is to try to learn from others’ experience



Starting point: the ‘original’ transformer

Review: choices in the standard transformer

Position embedding: sines and cosines

FFN: ReLU

Norm type: post-norm, LayerNorm



What you implemented – simple, modern variant
Differences:
•  LayerNorm is in front of the block

•  Absolute position embeddings

• FF layers use GeLU, not ReLU
•  Linear layers (and layernorm) have no 

bias (constant) terms

!!" # ≔ %&'( #)! )"

Why did we pick these?
What should you pick?



What LLaMA (70B) does – yet more variations
Differences from your implementation:

• Grouped Query Attention (GQA)

• Rotary embeddings (??)

• SwiGLU (??)

What even are these things?

Fig from : https://www.youtube.com/watch?v=ISNdQcPhsts



How do we pick these? 
Learn from the many other models (and papers) out there

We will talk through many major architecture and hyperparameter variants. 

What do all these models have in common? What parts vary? What can we learn from this?



What are we going to cover?
Common architecture variations
• Activations, FFN
• Attention variants
• Position embeddings

Hyperparameters that (do or don’t) matter
• What is ff_dim? Do multi_head dims always sum to model_dim?

Tokenization variants (and pitfalls)
• How many tokens? 

Optimization



Architecture variations..
Let’s think about the core architecture piece

High level view:

• Low consensus 
(except pre-norm)

• Trends toward ‘LLaMA-
like’ architectures



Pre-vs-post norm
The one thing everyone agrees on (in 2024)

Figure from Xiong 2020

Set up LayerNorm so that it doesn’t affect the 
main residual signal path (on the left)

Almost all modern LMs use pre-norm (but BERT was post-norm) 

(One somewhat funny exception – OPT350M. I don’t know why this is post-norm)



Pre-vs-post-norm, the data

Figure from Xiong 2020Salazar and Ngyuen 2019



Pre-vs-post norm, explanations?
Gradient attenuation [Xiong 2020] Gradient spikes [Salazar and Ngyuen] 

Original stated advantage– removing warmup. 
Today – stability and larger LRs for large networks



LayerNorm vs RMSNorm
Original transformer: LayerNorm – normalizes 

the mean and variance across *#$%&'

Many modern LMs: RMSNorm – does not 
subtract mean or add a bias term

! = #

# !
! + %

∗ '

Notable models:

GPT3/2/1, OPT, GPT-J, BLOOM 

Notable models:

LLaMA-family, PaLM, Chinchilla, T5



Why RMSNorm?

Modern explanation – it’s faster (and just as good).
• Fewer operations (no mean calculation)
• Fewer parameters (no bias term to store)

Does this explanation make sense?

Matrix multiplies are the vast majority of FLOPs (and memory)
[Ivanov et al 2023]



Why RMSNorm (2)
Important lesson: FLOPS are not runtime! (we will discuss this in far more detail later)

[Ivanov et al 2023]

Left top (”43G”) is FLOPS
Right top (“153”) is the FLOP-to-memory ratio

RMSNorm can be faster because 
it has fewer memory accesses



RMSNorm - validation

RMSNorm runtime (and surprisingly, perf) gains have been seen in papers

Narang et al 2020



More generally: dropping bias terms
Most modern transformers don’t have bias terms.

Original Transformer: 

Most implementations (if they’re not gated):

!!" # = % #&! &"

Reasons: memory (similar to RMSnorm) and optimization stability



LayerNorm: recap

• Basically everyone does pre-norm.
• Intuition – keep the good parts of residual connections
• Observations – nicer gradient propagation, fewer spike

• Most people do RMSnorm
• In practice, works as well as LayerNorm
• But, has fewer parameters to move around, which saves on wallclock time
• People more generally drop bias terms since the compute/param tradeoffs are not 

great.



Activations

A whole zoo of activations .. 

 ReLU, GeLU, Swish, ELU, GLU, GeGLU, ReGLU, SeLU, SwiGLU, LiGLU

What are these things? What do people use? Does it matter?



A few of the common activations
ReLU

!! # = max 0, #&! &"

GeLU
!! # = GELU #&! &"
0123 # ≔ #Φ(#)

SwiGLU / GeGLU (next slide..)

Notable models:

Original transformer, T5, 
Gopher, Chinchilla, OPT

Notable models:

GPT1/2/3, GPTJ, GPT-Neox, 
BLOOM

Notable models:

Llama, PaLM, LaMDA, T5 
v1.1, mT5



Gated activations (*GLU)

GLUs modify the ‘first part’ of a FF layer

(( # = max 0, #." .!

Instead of a linear + ReLU, augment the above with an (entrywise) linear term

max 0, #." → max 0, #." ⊗ (#2)

This gives the gated variant (ReGLU) – note that we have an extra parameter (V)

FFReGLU # = (max 0, #." ⊗#2).!



Gated variants of standard FF layers

GeGLU

SwiGLU (swish is # ∗ sigmoid(#))

Note: Gated models use smaller dimensions for the !!!  by 2/3

Notable models:

T5 v1.1, mT5, LaMDA

Notable models:

LLaMa, PaLM



Do gated linear units work?
Yes, fairly consistently so.

Shazeer 2020



Do gated linear units work (2)?
Yes, with other works corroborating Shazeer 2020

Narang et al 2020



Gating, activations

• Many variations (ReLU, GeLU, *GLU) across models.

• *GLU isn’t necessary for a good model (see GPT3) 

• But evidence points towards somewhat consistent gains from Swi/GeGLU



Serial vs Parallel layers
Normal transformer blocks are serial – they compute attention, then the MLP

Could we parallelize the transformer block?



Parallel layers
A few models (GPTJ, PaLM, GPT-NeoX) do parallel layers. Originally in GPT-J

If implemented right, LayerNorm can be shared, and matrix multiplies can be fused



Summary: architectures
Pre-vs-post norm: 
• Everyone does pre-norm (except OPT350M), likely with good reason.

Layer vs RMSnorm:
• RMSnorm has clear compute wins, sometimes even performance

Gating:
• GLUs seem generally better, though differences are small

Serial vs parallel layers:
• No extremely serious ablations, but has a compute win.



Many variations in position embeddings
Sine embeddings: add sines and cosines that enable localization

#$%&' (, * = ,! + .#"#$

Absolute embeddings: add a position vector to the embedding

#$%&' (, * = ,! + /%

Relative embeddings: add a vector to the attention computation 

Notable models:

Original transformer

Notable models:

GPT1/2/3, OPT

Notable models:

T5, Gopher, Chinchilla

Rope embeddings (next slides..) Notable models: GPTJ, PaLM, LLaMA



RoPE: rotary position embeddings
High level thought process: a relative position embedding should be some 8(#, 9) s.t. 

8 #, 9 , 8 :, ; = <(#, :, 9 − ;)

That is, the attention function only gets to depend on the relative position (i-j). How do 
existing embeddings not fulfill this goal?

• Sine: Has various cross-terms that are not relative
1>?@A #, 9 , 1>?@A :, 9 = B0, B1 + D12 , B1 …

• Absolute: obviously not relative

• Relative embeddings: is not an inner product



RoPE: rotary position embeddings
How can we solve this problem? 
•  We want our embeddings to be invariant to absolute position
•  We know that inner products are invariant to arbitrary rotation.

we 

know

Position independent 
embedding

we 
know

Embedding 
“of course we know”

Rotate by ‘2 positions’ Rotate by ‘0 positions’

we 

know

Embedding 
“we know that”



RoPE: rotary position embeddings
There are many rotations, which one do you pick? 

Just pair up the coordinates and rotate them in 2d (motivation: complex numbers)

[Su et al 2021]



The actual RoPE math
Multiply with sines and cosines 

Difference with sine embeddings – not additive, no cross terms



Implementation and code for RoPE

…
Same stuff as the usual multi-head self attention below

Get the RoPE 
matrix cos/sin

Multiply 
query/key inputs

Usual 
attention stuff

Note: embedding at each attention operation to enforce position invariance 



Hyperparameters

Transformer hyperparameter questions you might have had in 224n..

• How much bigger should the feedforward size be compared to hidden size?
• How many heads, and should num_heads always divide hidden size?

And other model setting questions
• Do people even regularize these huge LMs?
• How do people scale these models  - very deep or very wide?



Surprising (?) consensus hyperparameter 1
Feedforward – model dimension ratio.

There are two dimensions that are relevant – the feedforward dim (A33) and model dim 
(A45678). What should their relationship be?

F99 = G	F:;<=>

This is almost always true. There’s just a few exceptions.



Exception #1 – GLU variants
Remember that GLU variants scale down by 2/3rd. This means most GLU variants have 

A33 = ?
@A45678. This is mostly what happens. Some notable such examples.

Model F99/F:;<=>
PaLM 4

Mistral 7B 3.5

LLaMA-2 70B 3.5

LLaMA 70B 2.68

Qwen 14B 2.67

DeepSeek 67B 2.68

Yi 34B 2.85

T5 v1.1 2.5

Models are roughly in this range, though PaLM, LLaMA2  and Mistral are slightly larger 



Exception #2 – T5
As we have (and will) see, most LMs are have boring, conservative hyperparameters.
One exception is T5 [Raffel et al 2020] which has some very bold settings. 

In particular, for the 11B model, they set 

A33 = 65,536
A45678 = 1024

For an astounding 64-times multiplier.



Why this range of multipliers?
Empirically, there’s a  basin between 1-10 where this hyperparameter is near-optimal

[Kaplan+ 2020]



What can we learn from the model-dim hyperparam?
• The ‘default’ choices of A33 = 4A45678  and A33 = 2.66A45678 	have worked well for 

nearly all modern LLMs.

• But T5 does show that even radical choices of A33 = 64A45678  can work. This 
hyperparameter choice isn’t written in stone.

• That said, T5 has a follow-up model (T5 v1.1) that is ‘improved’ and uses a much 
more standard 2.5 multiplier on GeGLU, so the 64-times multiplier is likely 
suboptimal.



Surprising (?) consensus hyperparameter 2
Head-dim*num-heads to model-dim ratio. As a reminder, slide from 224n.

This doesn’t have to be true: we can have head-dimensions > model-dim / num-heads.

But most models do follow this guideline



How many heads, whats the model dim?
Some examples of this hyperparameter

Num heads Head dim Model dim Ratio
GPT3 96 128 12288 1

T5 128 128 1024 16

T5 v1.1 64 64 4096 1

LaMDA 128 128 8192 2

PaLM 48 258 18432 1.48

LLaMA2 64 128 8192 1

Most models have ratios around 1 – notable exceptions by some google models.



Evidence for 1-1 ratio?
There have been papers written against the 1-1 ratio [Bhojanapalli et al 2020]

But we don’t seem to be seeing significant ‘low rank bottlenecks’ in practice..



Aspect ratios
Should my model be deep or wide? How deep and how wide?

Most models are surprisingly consistent on this one too! 

Model F:;<=>/Q>AB=C
BLOOM 205

T5 v1.1 171

PaLM (540B) 156

GPT3/OPT/Mistral/Qwen 128

LLaMA / LLaMA2 / 
Chinchila

102

T5 (11B) 43

GPT2 33

Sweet spot?



Considerations about aspect ratio
Extremely deep models are harder to parallelize

[Tay et al 2021]



Evidence on aspect ratio scaling

[Kaplan et al 2020] [Tay et al 2021]



Dropout and other regularization

Do we need regularization during pretraining?

Arguments against:
• There is a lot of data (trillions of tokens), more than parameters.
• SGD only does a single pass on a corpus (hard to memorize)

This is all quite reasonable.. but what do people do in practice?



Dropout and weight decay in practice

* Most of the times papers just don’t discuss dropout. On open models, this closely matches not doing dropout. 
This may not be true of closed models.

Model Dropout* Weight decay

Original transformer 0.1 0

GPT2 0.1 0.1

T5 0.1 0

GPT3 0.1 0.1

T5 v1.1 0 0

PaLM 0 (variable)

OPT 0.1 0.1

LLaMA 0 0.1

Qwen 14B 0.1 0.1

Many older models used 
dropout during pretraining

Newer models (except Qwen) rely 
only on weight decay



Why weight decay LLMs?
[Andriushchenko et al 2023] has interesting observations about LLM weight decay

It’s not  to control overfitting Weight decay interacts with learning rates (cosine schedule) 



Summary: hyperparameters
Feedforward
• Factor-of-4 rule of thumb (8/3 for GLUs) is standard (with some evidence)

Head dim
• Head dim*Num head = D model is standard – but low to no validation

Aspect ratio
• Wide range of ‘good’ values (100-200). Systems concerns dictate the value

Regularization
• You still ‘regularize’ LMs but its effects are primarily on optimization dynamics



Tokenizers
The non-google world uses BPE. Google uses the SentencePiece library, which 

(sometimes) refers to a non-BPE subword tokenizer

Model Tokenizer

Original 
transformer

BPE

GPT 1/2/3 BPE

T5 / mT5 / T5v1.1 SentencePiece (Unigram)

Gopher/Chinchilla SentencePiece (??)

PaLM SentencePiece (??)

LLaMA BPE

Important property – all of these tokenizers are invertible 



Sentencepiece
Open-source library with many subword tokenizers

We will talk a bit about normalization and unigram subword tokenization



BPE and Unigram subword tokenizers

BPE is ‘bottom-up’ (merge characters). Unigram is ‘top-down’ (prune substrings)



Unigram tokenizers

Some (Bostrom and Durrett 2020) have argued that BPE produces less semantic tokens.
.. But BPE based LMs do work fine – the transformer on top can do quite a bit.



NFKC normalization
There are many characters that are different in Unicode but look very similar

Roman ‘A’ Fullwidth ‘A’
A Ａ

Some processing systems (e.g. sentencepiece) will NFKC normalize texts – with pros and cons



Whitespace and number related hacks
Multi-whitespace tokenization (GPT-NeoX) Individual digit tokenization (LLaMA/DeepSeek)



What are typical vocabulary sizes? 

Monolingual models – 30-50k vocab

Model Token count

Original 
transformer

37000

GPT 40257

GPT2/3 50257

T5/T5v1.1 32128

LLaMA 32000

Model Token count

mT5 250000

PaLM 256000

GPT4 100276

BLOOM 250680

DeepSeek 100000

Qwen 15B 152064

Yi 64000

Multilingual / production systems 100-250k

Monolingual vocabs don’t need to be huge, but multilingual ones do



Tokenizer: summary

• Everyone uses invertible subword tokenizers (BPE, Unigram) for good reason

• NFKC normalization is a double edged sword (2^5) and many models don’t use it

• For math and code, careful manual handling of whitespace and numbers can help



Attention heads
Most models don’t touch the attention head at all with a few minor exceptions..

GQA / MQA : Saving inference costs by reducing the number of heads

Sparse or sliding window attention (GPT4/Mistral): restricting the attention pattern 
to reduce compute cost



GQA/MQA – Reducing attention head cost
Let’s think about the compute involved for attention

Total arithmetric operations (!"#!), total memory accesses (!"# + !ℎ"! + #!)

Arithmetic intensity is high & "
# +

"
$%

&"
 - we can keep our GPUs running

X softmax projection



GQA/MQA – Reducing attention head cost
What about the incremental case when we generate text?

 Key difference: can’t parallelize the generation process – needs to be step by step

In this case – we need to incrementaly re-compute/update attention via the ‘KV cache’

 

[Animation from https://medium.com/@joaolages/kv-caching-explained-276520203249]



GQA/MQA – Reducing attention head cost

What’s the incremental arithmetic intensity?

Total arithmetric operations (?RA"), total memory accesses (?R"A + RA")

Arithmetic intensity is not good S D
6 +

!
E
F!

	- need large batches + short seq length 

(n) or big model dimensions (d) 

X projection

Is there some way around this? The n/d term is difficult to reduce.



MQA – just have fewer key dimensions.
Key idea – have multiple queries, but just one dimension for keys and values

We have much fewer items to move in and out of memory (KV Cache) 

Total memory access (?RA + ?R"T + RA"), Arithmetic intensity S !
6 +

D
6G +

!
E
F!

[figure from https://blog.fireworks.ai/multi-query-attention-is-all-you-need-db072e758055]



Recent extension – GQA
Don’t go all the way to one dimension of KV – have fewer dims

Simple knob to control expressiveness (key-query ratio) and inference efficiency



Does MQA hurt? Sometimes..
Small PPL hit w/ MQA [Shazeer 2019] Low/no hit w/ GQA [Ainslie 2023]



Sparse / sliding window attention
Attending to the entire context can be expensive (quadratic). 

Build sparse / structured attention that trades off expressiveness vs runtime (GPT3)

[Child et al 2019]



Sliding window attention
Another variation on this idea – sliding window attention

Just use the main part of the strided pattern – let depth extend effective context (Mistral)



Recap, conclusion, etc.
Many aspects (arch, hparams) of transformers are in common across the big LMs

Major differences? Position embeddings, activations, tokenization


