
Learning Representations of Text using Neural
Networks

Tomáš Mikolov
Joint work with Ilya Sutskever, Kai Chen, Greg Corrado,

Jeff Dean, Quoc Le, Thomas Strohmann

Google Research

NIPS Deep Learning Workshop 2013

1 / 31

How	do	we	represent	the	meaning	of	a	word?	

3/31/16	Richard	Socher	2	

Defini4on:	Meaning	(Webster	dic4onary)	

•  the	idea	that	is	represented	by	a	word,	phrase,	etc.	

•  the	idea	that	a	person	wants	to	express	by	using	
words,	signs,	etc.	

•  the	idea	that	is	expressed	in	a	work	of	wri4ng,	art,	etc.	

How	to	represent	meaning	in	a	computer?	

3/31/16	Richard	Socher	3	

Common	answer:	Use	a	taxonomy	like	WordNet	that	has	
hypernyms	(is-a)	rela4onships								and	

	 	 	 	 						synonym	sets	(good):	

[Synset('procyonid.n.01'),		
Synset('carnivore.n.01'),		
Synset('placental.n.01'),		
Synset('mammal.n.01'),		
Synset('vertebrate.n.01'),		
Synset('chordate.n.01'),		
Synset('animal.n.01'),		
Synset('organism.n.01'),		
Synset('living_thing.n.01'),		
Synset('whole.n.02'),		
Synset('object.n.01'),		
Synset('physical_en4ty.n.01'),		
Synset('en4ty.n.01')]	

S:	(adj)	full,	good		
S:	(adj)	es4mable,	good,	honorable,	respectable		
S:	(adj)	beneficial,	good		
S:	(adj)	good,	just,	upright		
S:	(adj)	adept,	expert,	good,	prac4ced,		
proficient,	skillful	
S:	(adj)	dear,	good,	near		
S:	(adj)	good,	right,	ripe	
…	
S:	(adv)	well,	good		
S:	(adv)	thoroughly,	soundly,	good		
S:	(n)	good,	goodness		
S:	(n)	commodity,	trade	good,	good		

Problems	with	this	discrete	representaDon	

3/31/16	Richard	Socher	4	

•  Great	as	resource	but	missing	nuances,	e.g.	
synonyms:		
adept,	expert,	good,	prac4ced,	proficient,	skillful?	

•  Missing	new	words	(impossible	to	keep	up	to	date):	
wicked,	badass,	niXy,	crack,	ace,	wizard,	genius,	ninjia	

•  Subjec4ve	

•  Requires	human	labor	to	create	and	adapt	

•  Hard	to	compute	accurate	word	similarity	à	

Problems	with	this	discrete	representaDon	

The	vast	majority	of	rule-based	and	sta4s4cal	NLP	work	regards	
words	as	atomic	symbols:	hotel, conference, walk
	

In	vector	space	terms,	this	is	a	vector	with	one	1	and	a	lot	of	zeroes	

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
Dimensionality:	20K	(speech)	–	50K	(PTB)	–	500K	(big	vocab)	–	13M	(Google	1T)	

We	call	this	a	“one-hot”	representa4on.	Its	problem:	

 motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] AND
 hotel [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0	

5	

One-hot encoding
▪ Represent each word as a vector of zeros, except for one element

▪ Set the value in the vector corresponding to the index in the set to 1:

▪ This is also known as a 1-of-K encoding (with K the vocabulary size)

One-hot representations

• Simple way how to encode discrete concepts, such as words

Example:
vocabulary = (Monday, Tuesday, is, a, today)
Monday = [1 0 0 0 0]
Tuesday = [0 1 0 0 0]
is = [0 0 1 0 0]
a = [0 0 0 1 0]
today = [0 0 0 0 1]

Also known as 1-of-N (where in our case, N would be the size of the vocabulary)

Tomas Mikolov, COLING 2014 11* Example reproduced with permission from Mikolov.

Related: Bag-of-words representation
▪ A related representation is the bag-of-words representation for documents

▪ It simply sums one-hot representation over all words in the document: 

▪ Indeed, you could build bags-of-n-grams representations, too

Bag-of-words representations

• Sum of one-hot codes
• Ignores order of words
Example:
vocabulary = (Monday, Tuesday, is, a, today)
Monday Monday = [2 0 0 0 0]
today is a Monday = [1 0 1 1 1]
today is a Tuesday = [0 1 1 1 1]
is a Monday today = [1 0 1 1 1]

Can be extended to bag-of-N-grams to capture local ordering of words

Tomas Mikolov, COLING 2014 12* Example reproduced with permission from Mikolov.

DistribuDonal	similarity	based	representaDons	

You	can	get	a	lot	of	value	by	represen4ng	a	word	by	
means	of	its	neighbors	

“You	shall	know	a	word	by	the	company	it	keeps”	

(J.	R.	Firth	1957:	11)	

One	of	the	most	successful	ideas	of	modern	sta4s4cal	NLP	

government debt problems turning into banking crises as has happened in

 saying that Europe needs unified banking regulation to replace the hodgepodge

ë	These	words	will	represent	banking	ì	

	6	

How	to	make	neighbors	represent	words?	

3/31/16	Richard	Socher	7	

Answer:	With	a	cooccurrence	matrix	X	

•  2	op4ons:	full	document	vs	windows	

•  Word	-	document	cooccurrence	matrix	will	give	
general	topics	(all	sports	terms	will	have	similar	
entries)	leading	to	“Latent	Seman4c	Analysis”	

•  Instead:	Window	around	each	word	à	captures	both	
syntac4c	(POS)	and	seman4c	informa4on	

Window	based	cooccurence	matrix	

3/31/16	Richard	Socher	8	

•  Window	length	1	(more	common:	5	-	10)	

•  Symmetric	(irrelevant	whether	leX	or	right	context)	

•  Example	corpus:		

•  I	like	deep	learning.		

•  I	like	NLP.		

•  I	enjoy	flying.	

Window	based	cooccurence	matrix	

3/31/16	Richard	Socher	9	

•  Example	corpus:		

•  I	like	deep	learning.		

•  I	like	NLP.		

•  I	enjoy	flying.	

counts	 I	 like	 enjoy	 deep	 learning	 NLP	 flying	 .	

I	 0	 2	 1	 0	 0	 0	 0	 0	

like	 2	 0	 0	 1	 0	 1	 0	 0	

enjoy	 1	 0	 0	 0	 0	 0	 1	 0	

deep	 0	 1	 0	 0	 1	 0	 0	 0	

learning	 0	 0	 0	 1	 0	 0	 0	 1	

NLP	 0	 1	 0	 0	 0	 0	 0	 1	

flying	 0	 0	 1	 0	 0	 0	 0	 1	

.	 0	 0	 0	 0	 1	 1	 1	 0	

Problems	with	simple	cooccurrence	vectors	

3/31/16	Richard	Socher	10	

Increase	in	size	with	vocabulary	

	

Very	high	dimensional:	require	a	lot	of	storage	

	

Subsequent	classifica4on	models	have	sparsity	issues	

	

à	Models	are	less	robust	

SoluDon:	Low	dimensional	vectors	

3/31/16	Richard	Socher	11	

•  Idea:	store	“most”	of	the	important	informa4on	in	a	
fixed,	small	number	of	dimensions:	a	dense	vector	

•  Usually	around	25	–	1000	dimensions	

•  How	to	reduce	the	dimensionality?	

Method	1:	Dimensionality	ReducDon	on	X	

3/31/16	Richard	Socher	12	

Singular	Value	Decomposi4on	of	cooccurrence	matrix	X.		

	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

r

= nn

r

r

X U S

S
S
S

S
.

2
3

1

r

UUU1 2 3

V
m m

V
V
1

2

3. . .
..

. ..

=n

X U S

m

V T

V T

UUU1 2 3

Sk

0

0

0

0

V
m

V
V
1

2

3
..

.

S
S
S2 3

1

. ..

kk

kn

r

k

Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4

is	the	best	rank	k	approxima4on	to	X	,	in	terms	of	least	squares.		
	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

r

= nn

r

r

X U S

S
S
S

S
.

2
3

1

r

UUU1 2 3

V
m m

V
V
1

2

3. . .
..

. ..

=n

X U S

m

V T

V T

UUU1 2 3

Sk

0

0

0

0

V
m

V
V
1

2

3
..

.

S
S
S2 3

1

. ..

kk

kn

r

k

Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4

Simple	SVD	word	vectors	in	Python	

3/31/16	Richard	Socher	13	

Corpus:		
I	like	deep	learning.	I	like	NLP.	I	enjoy	flying.	
	

Simple	SVD	word	vectors	in	Python	

3/31/16	Richard	Socher	14	

Corpus:	I	like	deep	learning.	I	like	NLP.	I	enjoy	flying.	
Prin4ng	first	two	columns	of	U	corresponding	to	the	2	biggest	singular	values	

Word	meaning	is	defined	in	terms	of	vectors	

•  In	all	subsequent	models,	including	deep	learning	models,	a	
word	is	represented	as	a	dense	vector	

	
	

	

	

linguis,cs		=	

15	

0.286	
0.792	
−0.177	
−0.107	
0.109	
−0.542	
0.349	
0.271	

Hacks	to	X	

3/31/16	Richard	Socher	16	

•  Problem:	func4on	words	(the,	he,	has)	are	too	
frequent	à	syntax	has	too	much	impact.	Some	fixes:		

•  min(X,t),	with	t~100	

•  Ignore	them	all	

•  Ramped	windows	that	count	closer	words	more	

•  Use	Pearson	correla4ons	instead	of	counts,	then	set	
nega4ve	values	to	0	

•  +++	

InteresDng	semanDc	paPers	emerge	in	the	vectors	

3/31/16	Richard	Socher	17	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

HEAD

HANDFACE

DOG

AMERICA

CAT

EYE

EUROPE

FOOT

CHINA
FRANCE

CHICAGO

ARM

FINGER

NOSE

LEG

RUSSIA

MOUSE

AFRICA

ATLANTA

EAR

SHOULDER

ASIA

COW

BULL

PUPPY LION

HAWAII

MONTREAL

TOKYO

TOE

MOSCOW

TOOTH

NASHVILLE

BRAZIL

WRIST

KITTEN

ANKLE

TURTLE

OYSTER

Figure 8: Multidimensional scaling for three noun classes.

WRIST
ANKLE

SHOULDER
ARM
LEG
HAND

FOOT
HEAD
NOSE
FINGER

TOE
FACE
EAR
EYE

TOOTH
DOG
CAT

PUPPY
KITTEN

COW
MOUSE

TURTLE
OYSTER

LION
BULL
CHICAGO
ATLANTA

MONTREAL
NASHVILLE

TOKYO
CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA

BRAZIL
MOSCOW

FRANCE
HAWAII

Figure 9: Hierarchical clustering for three noun classes using distances based on vector correlations.

20

An	Improved	Model	of	Seman4c	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
	

InteresDng	syntacDc	paPers	emerge	in	the	vectors	

3/31/16	Richard	Socher	18	

An	Improved	Model	of	Seman4c	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

READ

CALLED

TOLD

HEARD

ASKED

CUT

FELT

NOTICED

EXPLAINED

KICKED

JUMPED

DETECTED

EMAILED

QUESTIONED

SHOUTED

TASTED

PUNCHED

SHOVED

STABBED

SMELLED
SENSED

BASHED

TACKLED

DISCERNED

Figure 10: Multidimensional scaling of three verb semantic classes.

TAKE

SHOW

TOOK
TAKINGTAKEN

SPEAK

EAT

CHOOSE

SPEAKING

GROW

GROWING

THROW

SHOWN

SHOWING

SHOWED

EATING

CHOSEN

SPOKE

CHOSE

GROWN

GREW

SPOKEN

THROWNTHROWING

STEAL

ATE

THREW

STOLEN

STEALING

CHOOSING

STOLE

EATEN

Figure 11: Multidimensional scaling of present, past, progressive, and past participle forms for eight verb families.

22

InteresDng	semanDc	paPers	emerge	in	the	vectors	

3/31/16	Richard	Socher	19	

An	Improved	Model	of	Seman4c	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

DRIVE

LEARN

DOCTOR

CLEAN

DRIVER

STUDENT

TEACH

TEACHER

TREAT PRAY

PRIEST

MARRY

SWIM
BRIDE

JANITOR
SWIMMER

Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon

24

Problems	with	SVD	

3/31/16	Richard	Socher	20	

Computa4onal	cost	scales	quadra4cally		for	n	x	m	matrix:	

O(mn2)	flops	(when	n<m)		

à	Bad	for	millions	of	words	or	documents	

	

Hard	to	incorporate	new	words	or	documents	

Different	learning	regime	than	other	DL	models	

	

	

Distributed Representations

Distributed representations of words can be obtained from
various neural network based language models:

Feedforward neural net language model

Recurrent neural net language model

4 / 31

Language models

Language models
▪ Language models aim to predict a word given its surrounding words

▪ In other words, they aim to build a distribution

▪ Standard language models are based on n-grams:

▪ The likelihood of a sentence:

▪ All of the probabilities are obtained by counting over a large corpus:

p(W) = p(w1, w2, . . . , w|W|)

p(W) =
Y

wi2W
p(wi|wi�1, wi�2, . . . , wi�n)

p(wi|wi�1, wi�2) =
C(wi, wi�1, wi�2)

C(wi�1, wi�2)

Language models
▪ Example of using trigram model to compute the probability of a sentence:

▪ To deal with non-observed trigrams, Kneser-Ney smoothing is often used

▪ For bigrams, this smoother redefines the bigram probabilities as:

▪ This redistribution of (n-1)-gram to n-gram probabilities is applied recursively

p(“NY U is an excellent university”) = p(“NY U”)⇥ p(“is”|“NY U”)⇥ p(“an”|“NY U”, “is”)

⇥ p(“excellent”|“is”, “an”)⇥ p(“university”|“an”, “excellent”)

pKN (wt|wt�1) =
max(C(wt�1, wt)� �, 0)P

w0 C(wt�1, w0)
+ ↵pKN (wt)

A Feedforward Language Model
▪ We could use the following architecture for a word-prediction model:

Feedforward Neural Net Language Model

 input projection hidden output

w(t-3)

w(t-2)

w(t-1)

w(t)

U

U

U

V W

Four-gram neural net language model architecture (Bengio
2001)
The training is done using stochastic gradient descent and
backpropagation
The word vectors are in matrix U

5 / 31

* Figure reproduced with permission from Mikolov.

A Feedforward Language Model
▪ What does the matrix U actually model?

Feedforward Neural Net Language Model

 input projection hidden output

w(t-3)

w(t-2)

w(t-1)

w(t)

U

U

U

V W

Four-gram neural net language model architecture (Bengio
2001)
The training is done using stochastic gradient descent and
backpropagation
The word vectors are in matrix U

5 / 31

* Figure reproduced with permission from Mikolov.

Feedforward Neural Net Language Model

 input projection hidden output

w(t-3)

w(t-2)

w(t-1)

w(t)

U

U

U

V W

Four-gram neural net language model architecture (Bengio
2001)
The training is done using stochastic gradient descent and
backpropagation
The word vectors are in matrix U

5 / 31

Embedding
▪ Each column of U is an "embedding" of the corresponding word

▪ You can thus think of each word as being represented by a point that is
"embedded" in a high-dimensional space

▪ If the language model is trained well, then words that can be used
interchangeably should have similar embeddings

Efficient Learning

The training complexity of the feedforward NNLM is high:

Propagation from projection layer to the hidden layer

Softmax in the output layer

Using this model just for obtaining the word vectors is very
inefficient

6 / 31

One Hidden Layer Network

Keras implementation

model = Sequential()

model.add(Dense(H, input_dim=N)) # weight matrix dim [N * H]

model.add(Activation("tanh"))

model.add(Dense(K)) # weight matrix dim [H x K]

model.add(Activation("softmax"))

35 / 84

Efficient Learning

The full softmax can be replaced by:

Hierarchical softmax (Morin and Bengio)

Hinge loss (Collobert and Weston)

Noise contrastive estimation (Mnih et al.)

Negative sampling (our work)

We can further remove the hidden layer: for large models,
this can provide additional speedup 1000x

Continuous bag-of-words model

Continuous skip-gram model

7 / 31

Word2vec
▪ Word2vec is a very simple, very efficient language model:

▪ It does not concatenate word embeddings, but it sums them

▪ It does not use the second hidden layer

▪ It does not use a multi-class logistic loss (softmax) over predictions

▪ Because it is so simple, it can be trained on billions of words

▪ This has made it the de-facto standard in word embedding

Word2vec: Architectures
▪ "Continuous BoW" predicts current word given the surrounding words:

Continuous Bag-of-words Architecture

w(t)

w(t-1)

w(t-2)

Input projection output

w(t+1)

w(t+2)

SUM

Predicts the current word given the context
9 / 31

* Figure reproduced with permission from Mikolov.

Word2vec: Architectures
▪ "Skip-gram" predicts surrounding words given the current word:

Skip-gram Architecture

w(t)

Input projection output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Predicts the surrounding words given the current word
8 / 31

* Figure reproduced with permission from Mikolov.

Word2vec: Loss function
▪ Word2vec minimizes a binary logistic loss on positive and negative samples: 

▪ Learning with SGD in this loss is very efficient:

▪ Take a word and its context from a text corpus

▪ Sample K words (typically, 5<K<20) from the unigram distribution

▪ Compute the loss and the (sparse!) gradient update 

▪ Multithreaded implementation allows for training speed of 5M words / sec

`(U) =
X

c2C
log �

�
u>
wt
uwc

�
+

KX

j=1

log �
�
�u>

wt
uv0

�
with v0 ⇠ P (V)

Efficient Learning - Summary

Efficient multi-threaded implementation of the new models
greatly reduces the training complexity

The training speed is in order of 100K - 5M words per
second

Quality of word representations improves significantly with
more training data

10 / 31

Linguistic regularities
▪ Vector space implicitly encode regularities among words:

▪ We can exploit these regularities to do "linguistic arithmetic"

Linguistic Regularities in Word Vector Space

The word vector space implicitly encodes many regularities
among words

11 / 31

* Figure reproduced with permission from Mikolov.

Linguistic Regularities in Word Vector Space

The resulting distributed representations of words contain
surprisingly a lot of syntactic and semantic information

There are multiple degrees of similarity among words:

KING is similar to QUEEN as MAN is similar to
WOMAN

KING is similar to KINGS as MAN is similar to MEN

Simple vector operations with the word vectors provide
very intuitive results

12 / 31

Linguistic Regularities - Results

Regularity of the learned word vector space is evaluated
using test set with about 20K questions

The test set contains both syntactic and semantic
questions

We measure TOP1 accuracy (input words are removed
during search)

We compare our models to previously published word
vectors

13 / 31

Linguistic regularities
▪ Make dataset with analogies: "A is to B like C is to D"

▪ Answer the question "A is to B like C is to ?" by finding the word embedding
that is closest to the embedding of B - A + C

Linguistic Regularities - Results

Model Vector Training Training Accuracy

Dimensionality Words Time [%]

Collobert NNLM 50 660M 2 months 11

Turian NNLM 200 37M few weeks 2

Mnih NNLM 100 37M 7 days 9

Mikolov RNNLM 640 320M weeks 25

Huang NNLM 50 990M weeks 13

Our NNLM 100 6B 2.5 days 51

Skip-gram (hier.s.) 1000 6B hours 66

CBOW (negative) 300 1.5B minutes 72

14 / 31

* Table reproduced with permission from Mikolov.

Linguistic regularities
▪ Some examples of regularities:

Linguistic Regularities in Word Vector Space

Expression Nearest token

Paris - France + Italy Rome

bigger - big + cold colder

sushi - Japan + Germany bratwurst

Cu - copper + gold Au

Windows - Microsoft + Google Android

Montreal Canadiens - Montreal + Toronto Toronto Maple Leafs

15 / 31

* Table reproduced with permission from Mikolov.

Linguistic regularities
▪ Compositionally by vector addition:

Compositionality by Vector Addition

Expression Nearest tokens

Czech + currency koruna, Czech crown, Polish zloty, CTK

Vietnam + capital Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese

German + airlines airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa

Russian + river Moscow, Volga River, upriver, Russia

French + actress Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg

21 / 31

* Table reproduced with permission from Mikolov.

From Words to Phrases and Beyond

Often we want to represent more than just individual
words: phrases, queries, sentences

The vector representation of a query can be obtained by:

Forming the phrases

Adding the vectors together

19 / 31

From Words to Phrases and Beyond

Example query:
restaurants in mountain view that are not very good

Forming the phrases:
restaurants in (mountain view) that are (not very good)

Adding the vectors:
restaurants + in + (mountain view) + that + are + (not very

good)

Very simple and efficient

Will not work well for long sentences or documents

20 / 31

Visualization of Regularities in Word Vector Space

We can visualize the word vectors by projecting them to 2D
space

PCA can be used for dimensionality reduction

Although a lot of information is lost, the regular structure is
often visible

22 / 31

Visualization of Regularities in Word Vector Space

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

princess

prince

heroine

hero

actress

actor

landlady

landlord

female

male

cow

bull

hen

cockqueen

king

she

he

23 / 31

Visualization of Regularities in Word Vector Space

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

give

gave

given

take

took

taken

draw

drew

drawn

fall

fell

fallen

24 / 31

Visualization of Regularities in Word Vector Space

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

25 / 31

Visualizing graphs

Introduction
▪ Presume we are given a graph

▪ How do we learn a representation (embedding) for the vertices ?

▪ We would like vertices that are connected to have similar embeddings

▪ These embeddings we could then use in learning deep networks

▪ If the embeddings are low-dimensional: use them to visualize the graph!

G = (V, E)

Low-DEmbedding

v 2 V

t-Stochastic Neighbor Embedding
▪ Convert the graph to a probability distribution over vertices:

▪ Strongly connected nodes will have large probabilities

▪ When given high-dimensional data, we can compute similar probabilities:

▪ For instance, set

▪ Note that this is essentially a (normalized) Gaussian kernel matrix

pij =
exp(eij)P
k 6=l exp(ekl)

pij

eij = �kxi � xjk2 with xi 2 RD

t-Stochastic Neighbor Embedding
▪ Measure pairwise similarities between the embeddings:

Low-D

qij =
(1 + �yi � yj�2)�1

�
k

�
l �=k(1 + �yk � yl�2)�1

t-Stochastic Neighbor Embedding
▪ Move points around to minimize: KL(P ||Q) =

�

i

�

j �=i

pij log
pij

qij

Low-D

t-Stochastic Neighbor Embedding
▪ Kullback-Leibler divergence:

▪ Large modeled by small ? Big penalty!

▪ Small modeled by large ? Not-so-big penalty.

▪ t-SNE makes sure connected vertices are close together in the embedding!

qijpij

pij qij

KL(P ||Q) =
�

i

�

j �=i

pij log
pij

qij

Visualization experiment
▪ Suppose we are given the MNIST dataset of handwritten digits

▪ Can we make a scatter plot that shows some of the structure in this data?

▪ Approach 1:

▪ Apply PCA on the digits and make a scatter plot in which the data is projected
onto its first two principal components

▪ Approach 2:

▪ Construct a k-nearest neighbor graph (or simply compute a Gaussian kernel)
and run t-SNE to learn a 2D embedding that you can show in a scatter plot

Principal Components Analysis

0
1
2
3
4
5
6
7
8
9

MNIST

Visualizing movies
▪ Suppose you have a collection of user-movie ratings in a large rating matrix

▪ Decompose the rating matrix to obtain user features and movie features:

=

movies

u
se

rs

u
se

rs

movies

x

Indiana Jones, Final Fantasy, 
Raiders of the Lost Ark, Star Wars

Friends

Star Trek

Conclusions
▪Embeddings provide a way for deep learners to work on discrete data

▪word2vec is a popular embedding model for word representations

▪t-SNE is a popular embedding model for visualization of graphs

▪Many other embedding techniques exist, which differ in the exact choice for
the loss function that they optimize

References
▪Reading material:

▪ O. Levy and Y. Goldberg. Neural Word Embedding as Implicit Matrix
Factorization. Advances in Neural Information Processing 27:2177-2185, 2014
(first two sections).

▪ L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using
t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.

▪Source code:

▪ Word2vec: https://code.google.com/archive/p/word2vec/

▪ t-SNE: https://lvdmaaten.github.io/tsne/

