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How do we represent the meaning of a word?

Definition: Meaning (Webster dictionary)

the idea that is represented by a word, phrase, etc.

the idea that a person wants to express by using
words, signs, etc.

the idea that is expressed in a work of writing, art, etc.
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How to represent meaning in a computer?

Common answer: Use a taxonomy like WordNet that has
hypernyms (is-a) relationships and

from nltk.corpus import wordnet as wn
panda = wn.synset('panda.n.01")

hyper = lambda s: s.hypernyms/()
list(panda.closure(hyper)

synonym sets (good):

[Synset('procyonid.n.01"),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset(‘'mammal.n.01’),
Synset('vertebrate.n.01'),
Synset('chordate.n.01’),
Synset(‘animal.n.01"),
Synset('organism.n.01'),
Synset('living_thing.n.01"),
Synset('whole.n.02'),
Synset('object.n.01’),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

3

S: (adj) full, good

S: (adj) estimable, good, honorable, respectable
S: (adj) beneficial, good

S: (adj) good, just, upright

S: (adj) adept, expert, good, practiced,
proficient, skillful

S: (adj) dear, good, near

S: (adj) good, right, ripe

S: (adv) well, good

S: (adv) thoroughly, soundly, good
S: (n) good, goodness

S: (n) commodity, trade good, good
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Problems with this discrete representation

* Great as resource but missing nuances, e.g.
synonyms:
adept, expert, good, practiced, proficient, skillful?

* Missing new words (impossible to keep up to date):
wicked, badass, nifty, crack, ace, wizard, genius, ninjia

* Subjective
* Requires human labor to create and adapt

e Hard to compute accurate word similarity =
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Problems with this discrete representation

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: lhobel, ﬁowfm‘ﬁwc&, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[cooooco0000010000]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

motel [c 6 000000001 0000] AND
hotel [co0o0000100600000] = O©



One-hot encoding

- Represent each word as a vector of zeros, except for one element

- Setthevaluein the vector corresponding to the index in the set to 1:

vocabulary = (Monday,
Monday = [1 0 0 0 O]
Tuesday = [0 1 0 0 O]
1s = [0 0 1 0 0]
a = [0 0 0 1 O]
today = [0 0O 0O 0 1]

Tuesday,

1s,

a

- This is also known as a 110f-K encoding (with K the vocabulary size)

* Example reproduced with permission from Mikolov.

today)



Related: Bag-of-words representation

- Arelated representation is the bag-of-words representation for documents

- It simply sums one-hot representation over all words in the document:

vocabulary = (Monday,

Monday Monday

today 1s a Monday
today 1s a Tuesday
1s a Monday today

Tuesday,

[ 2

(1
[ O
(1

0

0
1
0

0

1
1
1

0

1
1
1

= = P O

1s, a, today)

- Indeed, you could build bags-of-n-grams representations, too

* Example reproduced with permission from Mikolov.



Distributional similarity based representations

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”

(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 24



How to make neighbors represent words?

Answer: With a cooccurrence matrix X

2 options: full document vs windows

Word - document cooccurrence matrix will give
general topics (all sports terms will have similar
entries) leading to “Latent Semantic Analysis”

Instead: Window around each word = captures both
syntactic (POS) and semantic information
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Window based cooccurence matrix

e Window length 1 (more common: 5 -10)

e Symmetric (irrelevant whether left or right context)

e Example corpus:

e |like deep learning.
e | like NLP.

* | enjoy flying.
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Window based cooccurence matrix

e Example corpus:

e |like deep learning.
e |like NLP.

* | enjoy flying.

counts |1 __|like | enjoy |deep |learning [NLP |flying |.___
0 0 0

enjoy
deep
learning
NLP
flying

o O »r O »r O O N
o »r O O O O O ¥
R O O O » O O O
o r »r B O O O O

0
2
1
0
0
0
0
0

o O O »r O O Bk
R O O O O O =
R O O O O +» O



Problems with simple cooccurrence vectors

Increase in size with vocabulary

Very high dimensional: require a lot of storage

Subsequent classification models have sparsity issues

—> Models are less robust
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Solution: Low dimensional vectors

e |dea: store “most” of the important informationin a
fixed, small number of dimensions: a dense vector

e Usually around 25 - 1000 dimensions

e How to reduce the dimensionality?
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Method 1: Dimensionality Reduction on X

Singular Value Decomposition of cooccurrence matrix X.

m r r m
] Vs, 0 v
n = n Y r V;
1 0 g
X U S v
m k
In=
n = n[UUU--| k| s, | & A
| 0_s,
X U S V'

X is the best rank k approximation to X, in terms of least squares.
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Simple SVD word vectors in Python

Corpus:
| like deep learning. | like NLP. | enjoy flying.

import numpy as np
la = np.linalg
words = ["I", "like", "enjoy",
"deep", "learnig", "NLP","flying","."]
X = np.array([(10,2,1,0,0,0,0,01,

[2,0,0,1'0'1,0,0]'
[1,0,0,0,0,0,1,0],
(,1,9,0,1,0,0,017,
[0,0,0,1,0,0,0,1],
(¢,1,9,0,0,0,0,11,
[0,0,1'0,0,0,0,1],
(%,9,90,0,1,1,1,011)

U, s, Vh = la.svd(X, full matrices=False)
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Simple SVD word vectors in Python

Corpus: | like deep learning. | like NLP. | enjoy flying.
Printing first two columns of U corresponding to the 2 biggest singular values

: for i in xrange(len(words)):
08 | plt.text(U[i,0], U[i,1], words[i])
06 | like ]

04r -
enjoy
0.2} _ .

0ol learnig |

flying
—02 [~ Nﬁep N

14 -08 -0.6 -0.4 -0.2 0.0 0.2



Word meaning is defined in terms of vectors

* In all subsequent models, including deep learning models, a
word is represented as a dense vector

4 )
0.286

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

linguistics =
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Hacks to X

* Problem: function words (the, he, has) are too
frequent = syntax has too much impact. Some fixes:

*  min(X,t), with t~100

* lgnore them all

 Ramped windows that count closer words more

 Use Pearson correlations instead of counts, then set
negative valuesto 0

°  +++
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Interesting semantic patters emerge in the vectors

WRIST
ANKLE
SHOULDER
ARM

LEG
HAND
FOOT
HEAD
NOSE
FINGER
TOE
FACE
EAR
EYE

TOOTH

DOG
CAT
PUPPY
KITTEN

COow

. MOUSE

— TURTLE
L———<OYSTER
LION

BULL

CHICAGO

ATLANTA
MONTREAL
NASHVILLE

TOKYO

CHINA
RUSSIA
AFRICA
ASIA
EUROPE
AMERICA
BRAZIL
MOSCOW
FRANCE
HAWAII

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. 2005
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Interesting syntactic patters emerge in the vectors

. ING
m CHGSENOSE
m STOLEN
o STEAL

o0 STOLE
OSTEALING

° Sl: o SPEAK o TAKE

0 TOOK

= THREMARTIRE W
1 SHOWN
o0 SHOWED m EAJENT
OATE
OSHOWING OEATING
o SHOW
" GROWRow
O0GREW
OGROWING

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. 2005
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Interesting semantic patters emerge in the vectors

ODRIVE

0 CLEAN

e DRIVER

e SWIMMER

o SWIM

OTREAT

¢ JANITOR
o STUDENT

e TEACHER

e DOCTOR

e PRIE

o MARRY

0 PRAY

BRIDE
ST

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Rohde et al. 2005
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Problems with SVD

Computational cost scales quadratically for n x m matrix:
O(mn?) flops (when n<m)

—> Bad for millions of words or documents

Hard to incorporate new words or documents

Different learning regime than other DL models

20 Richard Socher 3/31/16



Distributed Representations

@ Distributed representations of words can be obtained from
various neural network based language models:

e Feedforward neural net language model

e Recurrent neural net language model



Language models




Language models

- Language models aim to predict a word given its surrounding words

- In other words, they aim to build a distribution p(W) = p(w1, wa, ..., w)y))

- Standard language models are based on n-grams:

The likelihood of a sentence: p(W) = H p(w;i|w;—1, w2, ..., Wi_n)
w; EWVW

All of the probabilities are obtained by counting over a large corpus:

C(wi, Wi;—1, wz’—2)

p(wi|w;—1, w;—2) = Cw; 1, wi_2)
1— 1 11—



Language models

- Example of using trigram model to compute the probability of a sentence:

p(“NYU is an excellent university”) = p(“NYU”) x p(“is”|“NYU”) x p(“an”|“NYU”, “is”)

x p(“excellent”|“is”, “an”) x p(“university”|“an”, “excellent”)

- To deal with non-observed trigrams, [ Kneser-Ney smoothing is often used

- For bigrams, this smoother redefines the bigram probabilities as:
max (C(wi—1,wt) — 9,0)
Zw/ C(wt—la U]’)

- This redistribution of (n-1)-gram to n-gram probabilities is applied recursively

PrN(We|wi_q1) = + apr N (wy)





A Feedforward Language Model

input - hidden output

w(t-3)
K

wt2) s e w(t)

w(t-1)

* Figure reproduced with permission from Mikolov.



A Feedforward Language Model

- What does the matrix U actually model?

input projection hidden output

w(t-3)

w(t-2) .
\" w

w(t-1)

* Figure reproduced with permission from Mikolov.

w(t)



Feedforward Neural Net Language Model

input projection hidden output

w(t-3)

w(t-2) w(t)

w(t-1) U

@ Four-gram neural net language model architecture (Bengio
2001)

@ The training is done using stochastic gradient descent and
backpropagation

@ The word vectors are in matrix U
5/31



Embedding

- Each column of Uis an "embedding" of the corresponding word

- You can thus think of each word as being represented by a point thatis
"embedded" in a high-dimensional space

- If the language model is trained well, then words that can be used
interchangeably should have similar embeddings



Efficient Learning

@ The training complexity of the feedforward NNLM is high:

e Propagation from projection layer to the hidden layer

e Softmax in the output layer

@ Using this model just for obtaining the word vectors is very
inefficient



One Hidden Layer Network

b
| be
i ) ¢0
ORI O
1 \@> 28 >| § > fO
. g .
LW b | . W .| IE
. @* " P fr—
@* ZIZ—l ’@» hH—l A
x 2" (x) h(x) z°(x) f(x)

Keras implementation

model = Sequential()
model.add(Dense(H, input_dim=N))
model.add(Activation("tanh"))
model.add(Dense(K))

model.add(Activation("softmax"))
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Efficient Learning

@ The full softmax can be replaced by:

e Hierarchical softmax (Morin and Bengio)

Hinge loss (Collobert and Weston)

Noise contrastive estimation (Mnih et al.)

Negative sampling (our work)

@ We can further remove the hidden layer: for large models,
this can provide additional speedup 1000x

e Continuous bag-of-words model

e Continuous skip-gram model



Word2vec

- Word2vec is avery simple, very efficient language model:

It does not concatenate word embeddings, but it sums them
It does not use the second hidden layer

It does not use a multi-class logistic loss (softmax) over predictions

- Because it is so simple, it can be trained on billions of words

* This has made it the de-facto standard in word embedding



Word2vec: Architectures

- 'Continuous BoW" predicts current word given the surrounding words:

Input projection  output

w(t-2)

w(t-1)
w(t)
(

SUM
w(t+1) /
w(t+2)

* Figure reproduced with permission from Mikolov.



Word2vec: Architectures

- "Skip-gram" predicts surrounding words given the current word:

Input projection  output

w(t-2)

w(t-1)

w(t+1)

T

w(t+2)

* Figure reproduced with permission from Mikolov.



Source Text

B

brown |fox Jjumps

The

brown [fox | Jjumps

The|quick - fox|jumps

over

over

over

The|quick

brown - Jjumps

over

the

the

the

the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)



Output Layer
Softmax Classifier

H Idden Laye r Probability that the word at a
Linear Neurons —— randomly chosen, nearby
Input Vector position is “abandon”

0
v
0
0 o —= .. “ability”
0 S
0 y
0 »
A ‘1’ in the position 0 .. “able
corresponding to the —»
word “ants 0
0
‘ A
0
10,000
positions
300 neurons — .. "“zone”

10,000
neurons



10,000 words

Hidden Layer
Weight Matrix

300 neurons

—

10,000 words

Word Vector
Lookup Table!

300 features




17 24 1 -
23 5 7

[0 0 01 0] x |4 6 13| =110 12 19]
10 12 19
11 18 25.-




Output weights for “car”

softmax

Word vector for “ants”

X

300 features

Probability that if you
= randomly pick a word
nearby “ants”, that it is “car”

300 features




Training the network

Find parameters 8 = (W”; b"; W?; b°) that minimize the negative
log likelihood (or cross entropy)

The loss function for a given sample s € S:

I(£(x*; 0), ) = nll(0; x*, y*) = — log £(x’; 0),s

A

example y° =3

fo

— log f(x*; 6) fs | = —log f3

y® -

fl\'—l
f(x*;0)
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Softmax Regression

exp(@®T x®)
Zf: | exp(@DTx®)

PO® = kix;6) =

R x()
J) = — 1 {y® =} 1 e"p(
©) ; kzl, {y® =k} 8 © oxp@0Tx0)

Vood@ ==Y [x@ (1{y® =k} - PG® = k|x®; 6))]
i=1

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/



Maximize Conditional Log Likelihood: Gradient ascent

exp(wg + >; w; X;)
1+ exp(wg + 3; w;i X;)

I(w) = Zyj<wo+zwimz> —|n<1+ea:p<wo+z_wz-x{>>
J ?

852:) B Z [ (1 + exp(wg + Z’wﬂ?]))]

—Z i z-z?exp(wo—kzz-'wi :Z)
v 1+ exp(wo + ), wimg)

P(Y =1|X,W) =

_ il exp(wo + 32, wiz?)
sz [y] 1+exp(wo+zi’wﬂ{)]

BéS:) _ zj:xz (y! — P(Y? = 1|27, w))




Word2vec: Loss function

- Word2vec minimizes a binary Iogistic loss on positive and negative samples:

Zloga u,, Uy, ) + Zloga —u,, u,) with o' ~ P(V)
ceC
* Learning with SGD in this loss is very efficient:
- Take aword and its context from a text corpus
- Sample K words (typically, 54KK20) from the unigram distribution

- Compute the loss and the (sparse!) gradient update

- Multithreaded implementation allows for training speed of 5M words / sec



Output Layer
Softmax Classifier

H Idden Laye r Probability that the word at a
Linear Neurons —— randomly chosen, nearby
Input Vector position is “abandon”

0
v
0
0 o —= .. “ability”
0 S
0 y
0 »
A ‘1’ in the position 0 .. “able
corresponding to the —»
word “ants 0
0
‘ A
0
10,000
positions
300 neurons — .. "“zone”

10,000
neurons



Efficient Learning - Summary

@ Efficient multi-threaded implementation of the new models
greatly reduces the training complexity

@ The training speed is in order of 100K - 5M words per
second

@ Quality of word representations improves significantly with
more training data

10/31



Linguistic regularities

- Vector space implicitly encode regularities among words:

WOMAN UEENS
AUNT Q

MAN / KINGS
UNCLE

QUEEN \ QUEEN

KING KING

- We can exploit these regularities to do "linguistic arithmetic"

* Figure reproduced with permission from Mikolov.



Linguistic Regularities in Word Vector Space

@ The resulting distributed representations of words contain
surprisingly a lot of syntactic and semantic information

@ There are multiple degrees of similarity among words:

e KING is similar to QUEEN as M AN is similar to
WOMAN

o KING is similar to KINGS as MAN is similar to MEN

@ Simple vector operations with the word vectors provide
very intuitive results
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Linguistic Regularities - Results

@ Regularity of the learned word vector space is evaluated
using test set with about 20K questions

@ The test set contains both syntactic and semantic
questions

@ We measure TOP1 accuracy (input words are removed
during search)

@ We compare our models to previously published word
vectors

13/31



Linguistic regularities
- Make dataset with analogies:"Ais to B like Cis to D"

- Answer the question"Ais to B like Cis to ?" by finding the word embedding
thatis closest to the embedding of B-A+C

Model Vector Training Training | Accuracy
Dimensionality | Words Time [%]
Collobert NNLM 50 660M 2 months 11
Turian NNLM 200 37M few weeks 2
Mnih NNLM 100 37M 7 days 9
Mikolov RNNLM 640 320M weeks 25
Huang NNLM 50 990M weeks 13
Our NNLM 100 6B 2.5 days 51
Skip-gram (hier.s.) 1000 6B hours 66
CBOW (negative) 300 1.5B minutes 72

*Table reproduced with permission from Mikolov.



Linguistic regularities

- Some examples of regularities:

Expression

Nearest token

Paris - France + ltaly
bigger - big + cold
sushi - Japan + Germany
Cu - copper + gold

Windows - Microsoft + Google

Montreal Canadiens - Montreal + Toronto

Rome
colder
bratwurst
Au
Android

Toronto Maple Leafs

*Table reproduced with permission from Mikolov.




Linguistic regularities

- Compositionally by vector addition:

Expression Nearest tokens
Czech + currency koruna, Czech crown, Polish zloty, CTK
Vietnam + capital Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese

German + airlines | airline Lufthansa, carrier Lufthansa, flag carrier Lufthansa
Russian + river Moscow, Volga River, upriver, Russia

French + actress | Juliette Binoche, Vanessa Paradis, Charlotte Gainsbourg

*Table reproduced with permission from Mikolov.



From Words to Phrases and Beyond

@ Often we want to represent more than just individual
words: phrases, queries, sentences

@ The vector representation of a query can be obtained by:

e Forming the phrases

e Adding the vectors together

19/31



From Words to Phrases and Beyond

@ Example query:
restaurants in mountain view that are not very good

@ Forming the phrases:
restaurants in (mountain view) that are (not very good)

@ Adding the vectors:
restaurants + in + (mountain view) + that + are + (not very
good)

@ Very simple and efficient

@ Will not work well for long sentences or documents

20/31



Visualization of Regularities in Word Vector Space

@ We can visualize the word vectors by projecting them to 2D
space

@ PCA can be used for dimensionality reduction

@ Although a lot of information is lost, the regular structure is
often visible

22/31



Visualization of Regularities in Word Vector Space

06— 'ng
05—
04[- prince
03h queen cock
bull

0.2

princess

hen
01
hero
ok cow
L ctor landlord male
e
0.2
landlady
herojne

0% female
04 | | actress "€, | | )
-0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6
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Visualization of Regularities in Word Vector Space

fallen
0.05
|
o drawn i
aw given
ve
0.15
fell
take
o2 drew G
ave
025 [¢]
—03f took
035 | ! ! | ! ! ]
-0.8 0.6 0.4 0.2 0 0.2 0.4 06
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Visualization of Regularities in Word Vector Space

2 T
China¢
Beijing
1.5 Russia¢ b
Japan«
1L »Moscow 7
Turkey< »Ankara T 0kyo
05 B
Poland«
0 Germany« E
X%
France "Warsaw
% Berlin
-0.5 Italy< Paris B
Athens
Greeces *
4 I Spain Rome |
-1.5 Porlu>< al Madrid R
’ 9 »Lisbon
_2 Il Il Il Il Il Il Il
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Visualizing graphs




Introduction

" Presume weare givenagraph G = (), &)
- How do we learn a representation (embedding) for the vertices v € V?
- These embeddings we could then use in learning deep networks

- If the embeddings are low-dimensional: use them to visualize the graph!

é )
Embedding
o @
[
() N
@
o




t-Stochastic Neighbor Embedding

- Convert the graph to a probability distribution over vertices:

_ exp(eij)
D k1 €XD(€kt)

- Strongly connected nodes will have large probabilities P;

- When given high-dimensional data, we can compute similar probabilities:
ith x; € R”

- Forinstance, set
- Note that this s




t-Stochastic Neighbor Embedding

- Measure pairwise similarities between the embeddings:

i Low-D ‘ ‘ ‘
w ® v
L

(L + Iy — ysl®)
ZkZl;ék 1+ lye — yull*)



t-Stochastic Neighbor Embedding

- Move points around to minimize: KL(P||Q) = Zijlog—

,
Low-D




t-Stochastic Neighbor Embedding

- Kullback-Leibler divergence: KL(P||Q) =) ) pi log
1 JFi

Large p;; modeled by small g;;? Big penalty!
Small pi; modeled by large ¢;;? Not-so-big penalty.

* t-SNE makes sure connected vertices are close together in the embedding!



Visualization experiment

- Suppose we are given the MNIST dataset of handwritten digits

= Can we make a scatter plot that shows some of the structure in this data?

- Approach 1.

onto its first two principal components

- Approach 2:

and run t-SNE to learn a 2D embedding that you can show in a scatter plot




Principal Components Analysis
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Visualizing movies

- Suppose you have a collection of user-movie ratings in a large rating matrix

- Decompose the rating matrix to obtain user features and movie features:
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Conclusions

-Embeddings provide a way for deep learners to work on discrete data
“word2vecis a popular embedding model for word representations
-t-SNE is a popular embedding model for visualization of graphs

“Many other embedding techniques exist, which differ in the exact choice for
the loss function that they optimize
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