
CSE 258 – Lecture 8
Web Mining and Recommender Systems

Extensions of latent-factor models, 

(and more on the Netflix prize!)



Extensions of latent-factor models
So far we have a model that looks like:

How might we extend this to:
• Incorporate features about users and items

• Handle implicit feedback
• Change over time

See Yehuda Koren (+Bell & Volinsky)’s magazine article:
“Matrix Factorization Techniques for Recommender Systems”

IEEE Computer, 2009



Extensions of latent-factor models
1) Features about users and/or items
(simplest case) Suppose we have binary attributes to 

describe users or items

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u

e.g. is female is male is between 18-24yo



Extensions of latent-factor models
1) Features about users and/or items
(simplest case) Suppose we have binary attributes to 

describe users or items
• Associate a parameter vector with each attribute
• Each vector encodes how much a particular feature 

“offsets” the given latent dimensions

A(u) = [1,0,1,1,0,0,0,0,0,1,0,1]

attribute vector for user u
e.g. y_0 = [-0.2,0.3,0.1,-0.4,0.8]

~ “how does being male impact gamma_u”



Extensions of latent-factor models
1) Features about users and/or items
(simplest case) Suppose we have binary attributes to 

describe users or items
• Associate a parameter vector with each attribute
• Each vector encodes how much a particular feature 

“offsets” the given latent dimensions
• Model looks like:

• Fit as usual:

error regularizer



Extensions of latent-factor models
2) Implicit feedback

Perhaps many users will never actually rate things, but may 
still interact with the system, e.g. through the movies they 

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector 
describing a user’s actions

N(u) = [1,0,0,0,1,0,….,0,1]
implicit feedback vector for user u

e.g. y_0 = [-0.1,0.2,0.3,-0.1,0.5]
Clicked on “Love Actually” but didn’t watch



Extensions of latent-factor models
2) Implicit feedback

Perhaps many users will never actually rate things, but may 
still interact with the system, e.g. through the movies they 

view, or the products they purchase (but never rate)

• Adopt a similar approach – introduce a binary vector 
describing a user’s actions

• Model looks like:

normalize by the number of actions the user performed



Extensions of latent-factor models
3) Change over time

There are a number of reasons why rating data might be 
subject to temporal effects…



Extensions of latent-factor models
3) Change over time

Netflix ratings 
over time

early 2004

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

Netflix changed 
their interface!



Extensions of latent-factor models
3) Change over time

Netflix ratings by 
movie age

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)

People tend to give higher 
ratings to older movies



Extensions of latent-factor models
3) Change over time

A few temporal effects from beer reviews



Extensions of latent-factor models
3) Change over time

There are a number of reasons why rating data might be 
subject to temporal effects…

e.g. “Collaborative filtering 
with temporal dynamics”

Koren, 2009

• Changes in the interface
• People give higher ratings to older movies (or, people 

who watch older movies are a biased sample)
• The community’s preferences gradually change over time
• My girlfriend starts using my Netflix account one day
• I binge watch all 144 episodes of buffy one week and 

then revert to my normal behavior
• I become a “connoisseur” of a certain type of movie
• Anchoring, public perception, seasonal effects, etc.

e.g. “Sequential & temporal 
dynamics of online opinion”

Godes & Silva, 2012

e.g. “Temporal 
recommendation on graphs 

via long- and short-term 
preference fusion”
Xiang et al., 2010

e.g. “Modeling the evolution 
of user expertise through 

online reviews”
McAuley & Leskovec, 2013



Extensions of latent-factor models
3) Change over time

Each definition of temporal evolution demands a slightly 
different model assumption (we’ll see some in more detail 

later tonight!) but the basic idea is the following:
1) Start with our original model:

2) And define some of the parameters as a function of time:

3) Add a regularizer to constrain the time-varying terms:

parameters should change smoothly



Extensions of latent-factor models
3) Change over time

Case study: how do people acquire tastes for beers (and 
potentially for other things) over time?

Differences between 
“beginner” and “expert” 
preferences for different 

beer styles



Extensions of latent-factor models
4) Missing-not-at-random

• Our decision about whether to purchase a movie (or 
item etc.) is a function of how we expect to rate it

• Even for items we’ve purchased, our decision to enter a 
rating or write a review is a function of our rating

• e.g. some rating distribution from a few datasets:
EachMovie MovieLens Netflix

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)



Extensions of latent-factor models
4) Missing-not-at-random

e.g. Men’s watches:



Extensions of latent-factor models
4) Missing-not-at-random

• Our decision about whether to purchase a movie (or 
item etc.) is a function of how we expect to rate it

• Even for items we’ve purchased, our decision to enter a 
rating or write a review is a function of our rating

• So we can predict ratings more accurately by building 
models that account for these differences

1. Not-purchased items have a different prior on ratings 
than purchased ones

2. Purchased-but-not-rated items have a different prior on 
ratings than rated ones

Figure from Marlin et al. “Collaborative Filtering and the Missing at Random Assumption” (UAI 2007)



Moral(s) of the story
How much do these extension help?

bias terms

implicit feedback

temporal dynamics

Moral: increasing 
complexity helps a 
bit, but changing 

the model can 
help a lot

Figure from Koren: “Collaborative Filtering with Temporal Dynamics” (KDD 2009)



Moral(s) of the story

So what actually happened with Netflix?
• The AT&T team “BellKor”, consisting of Yehuda Koren, Robert Bell, and Chris 

Volinsky were early leaders. Their main insight was how to effectively 
incorporate temporal dynamics into recommendation on Netflix.

• Before long, it was clear that no one team would build the winning solution, 
and Frankenstein efforts started to merge. Two frontrunners emerged, “BellKor’s

Pragmatic Chaos”, and “The Ensemble”.
• The BellKor team was the first to achieve a 10% improvement in RMSE, putting 

the competition in “last call” mode. The winner would be decided after 30 days.
• After 30 days, performance was evaluated on the hidden part of the test set.

• Both of the frontrunning teams had the same RMSE (up to some precision) but 
BellKor’s team submitted their solution 20 minutes earlier and won $1,000,000

For a less rough summary, see the Wikipedia page about the Netflix prize, 
and the nytimes article about the competition: http://goo.gl/WNpy7o

http://goo.gl/WNpy7o


Moral(s) of the story

Afterword
• Netflix had a class-action lawsuit filed against them after somebody de-

anonymized the competition data
• $1,000,000 seems to be incredibly cheap for a company the size of Netflix in 

terms of the amount of research that was devoted to the task, and the potential 
benefit to Netflix of having their recommendation algorithm improved by 10%

• Other similar competitions have emerged, such as the Heritage Health Prize 
($3,000,000 to predict the length of future hospital visits)

• But… the winning solution never made it into production at Netflix – it’s a 
monolithic algorithm that is very expensive to update as new data comes in*

*source: a friend of mine told me and I have no actual evidence of this claim



Moral(s) of the story

Finally…
Q: Is the RMSE really the right approach? Will improving rating prediction by 10% 

actually improve the user experience by a significant amount?
A: Not clear. Even a solution that only changes the RMSE slightly could drastically 

change which items are top-ranked and ultimately suggested to the user.
Q: But… are the following recommendations actually any good?

A1: Yes, these are my favorite movies!
or A2: No! There’s no diversity, so how will I discover new content?

5.0 stars 5.0 stars 5.0 stars 5.0 stars 4.9 stars 4.9 stars 4.8 stars 4.8 stars

predicted rating



Summary

Various extensions of latent factor models:
• Incorporating features

e.g. for cold-start recommendation
• Implicit feedback

e.g. when ratings aren’t available, but other actions are
• Incorporating temporal information into latent factor models

seasonal effects, short-term “bursts”, long-term trends, etc.
• Missing-not-at-random 

incorporating priors about items that were not bought or rated
• The Netflix prize



Things I didn’t get to…

Socially regularized recommender 
systems

see e.g. “Recommender Systems with Social Regularization” 
http://research.microsoft.com/en-us/um/people/denzho/papers/rsr.pdf

social regularizer

network

http://research.microsoft.com/en-us/um/people/denzho/papers/rsr.pdf


Questions?

Further reading:
Yehuda Koren’s, Robert Bell, and Chris Volinsky’s IEEE computer article:

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
Paper about the “Missing-at-Random” assumption, and how to address it:

http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
Collaborative filtering with temporal dynamics:

http://research.yahoo.com/files/kdd-fp074-koren.pdf
Recommender systems and sales diversity:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

http://www2.research.att.com/~volinsky/papers/ieeecomputer.pdf
http://www.cs.toronto.edu/~marlin/research/papers/cfmar-uai2007.pdf
http://research.yahoo.com/files/kdd-fp074-koren.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=955984

