
CSE 258 – Lecture 7
Web Mining and Recommender Systems

Recommender Systems



Why recommendation?

The goal of recommender systems is…
• To help people discover new content



Why recommendation?

The goal of recommender systems is…
• To help us find the content we were 

already looking for

Are these 
recommendations 

good or bad?



Why recommendation?

The goal of recommender systems is…
• To discover which things go together



Why recommendation?

The goal of recommender systems is…
• To personalize user experiences in 

response to user feedback



Why recommendation?

The goal of recommender systems is…
• To recommend incredible products 

that are relevant to our interests



Why recommendation?

The goal of recommender systems is…
• To identify things that we like



Why recommendation?

The goal of recommender systems is…
• To help people discover new content
• To help us find the content we were 

already looking for
• To discover which things go together
• To personalize user experiences in 

response to user feedback
• To identify things that we like

To model people’s 
preferences, opinions, 

and behavior



Recommending things to people

Suppose we want to build a movie 
recommender

e.g. which of these films will I rate highest?



Recommending things to people

We already have 
a few tools in our 

“supervised 
learning” toolbox 
that may help us



Recommending things to people

Movie features: genre, 
actors, rating, length, etc.

User features: age, gender, 
location, etc.



Recommending things to people

With the models we’ve seen so far, we 
can build predictors that account for…
• Do women give higher ratings than men?
• Do Americans give higher ratings than Australians?
• Do people give higher ratings to action movies?
• Are ratings higher in the summer or winter?
• Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?



Recommending things to people

Consider the following linear predictor 
(e.g. from week 1):



Recommending things to people

But this is essentially just two separate 
predictors!

user predictor movie predictor

That is, we’re treating user and movie 
features as though they’re independent!



Recommending things to people

But these predictors should (obviously?) 
not be independent

do I tend to give high ratings?

does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give 
high ratings to this genre of movie”?



Recommending things to people
Recommender Systems go beyond the methods we’ve seen so 

far by trying to model the relationships between people and 
the items they’re evaluating

my (user’s)
“preferences”

HP’s (item) 
“properties”

preference
Toward
“action”

preference toward
“special effects”

is the movie 
action-
heavy?

are the special effects good?

Compatibility



Today

Recommender Systems
1. Collaborative filtering

(performs recommendation in terms of user/user and item/item 
similarity)

2. Assignment 1
3. (next lecture) Latent-factor models

(performs recommendation by projecting users and items into 
some low-dimensional space)

4. (next lecture) The Netflix Prize



Defining similarity between users & items

Q: How can we measure the similarity
between two users?

A: In terms of the items they 
purchased!

Q: How can we measure the similarity 
between two items?

A: In terms of the users who purchased 
them!



Defining similarity between users & items

e.g.:
Amazon



Definitions

Definitions

= set of items purchased by user u

= set of users who purchased item i



Definitions

Or equivalently…

users

items

= binary representation of items purchased by u
= binary representation of users who purchased i



0. Euclidean distance

Euclidean distance:
e.g. between two items i,j (similarly defined between two users)



0. Euclidean distance

Euclidean distance:
e.g.: U_1 = {1,4,8,9,11,23,25,34}

U_2 = {1,4,6,8,9,11,23,25,34,35,38}
U_3 = {4}
U_4 = {5}

Problem: favors small sets, even if they 
have few elements in common



1. Jaccard similarity

 Maximum of 1 if the two 
users purchased exactly the 

same set of items
(or if two items were purchased by the 

same set of users)

 Minimum of 0 if the two users 
purchased completely 
disjoint sets of items

(or if the two items were purchased by 
completely disjoint sets of users)



2. Cosine similarity

(vector representation of 
users who purchased 

harry potter)

(theta = 0)  A and B point in 
exactly the same direction

(theta = 180)  A and B point 
in opposite directions (won’t 

actually happen for 0/1 vectors)

(theta = 90)  A and B are 
orthogonal



2. Cosine similarity

Why cosine?
• Unlike Jaccard, works for arbitrary vectors

• E.g. what if we have opinions in addition to purchases?

bought and liked
didn’t buy

bought and hated



2. Cosine similarity

(vector representation of 
users’ ratings of Harry 

Potter)

(theta = 0)  Rated by the 
same users, and they all agree

(theta = 180)  Rated by the 
same users, but they 

completely disagree about it

(theta = 90)  Rated by 
different sets of users

E.g. our previous example, now with 
“thumbs-up/thumbs-down” ratings 



4. Pearson correlation

What if we have numerical ratings 
(rather than just thumbs-up/down)?

bought and liked
didn’t buy

bought and hated



4. Pearson correlation

What if we have numerical ratings 
(rather than just thumbs-up/down)?



4. Pearson correlation

What if we have numerical ratings 
(rather than just thumbs-up/down)?
• We wouldn’t want 1-star ratings to be parallel to 5-

star ratings
• So we can subtract the average – values are then 

negative for below-average ratings and positive
for above-average ratings

items rated by both users average rating by user v



4. Pearson correlation

Compare to the cosine similarity:
Pearson similarity (between users):

Cosine similarity (between users):

items rated by both users average rating by user v



Collaborative filtering in practice

How does amazon generate their recommendations?

Given a product: Let      be the set of users
who viewed it 

Rank products according to:                      (or cosine/pearson)

.86 .84             .82             .79               …

Linden, Smith, & York (2003)



Collaborative filtering in practice

Note: (surprisingly) that we built 
something pretty useful out of 
nothing but rating data – we 

didn’t look at any features of the 
products whatsoever



Collaborative filtering in practice

But: we still have
a few problems left to address…
1. This is actually kind of slow given a huge 

enough dataset – if one user purchases one 
item, this will change the rankings of every 
other item that was purchased by at least 

one user in common
2. Of no use for new users and new items (“cold-

start” problems
3. Won’t necessarily encourage diverse results
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Web Mining and Recommender Systems

Latent-factor models



Latent factor models

So far we’ve looked at approaches that 
try to define some definition of user/user 

and item/item similarity

Recommendation then consists of
• Finding an item i that a user likes (gives a high rating)
• Recommending items that are similar to it (i.e., items j

with a similar rating profile to i)



Latent factor models

What we’ve seen so far are 
unsupervised approaches and whether 
the work depends highly on whether we 

chose a “good” notion of similarity

So, can we perform recommendations 
via supervised learning?



Latent factor models

e.g. if we can model

Then recommendation 
will consist of identifying



The Netflix prize
In 2006, Netflix created a dataset of 100,000,000 movie ratings

Data looked like:

The goal was to reduce the (R)MSE at predicting ratings:

Whoever first manages to reduce the RMSE by 10% versus 
Netflix’s solution wins $1,000,000

model’s prediction ground-truth



This led to a lot of research on rating 
prediction by minimizing the Mean-

Squared Error

(it also led to a lawsuit against Netflix, once somebody 
managed to de-anonymize their data)

We’ll look at a few of the main 
approaches

The Netflix prize



Rating prediction

Let’s start with the 
simplest possible model:

user item



Rating prediction

What about the 2nd simplest model?

user item
how much does 
this user tend to 
rate things above 

the mean?

does this item tend 
to receive higher 

ratings than others

e.g.



Rating prediction

The optimization problem becomes:

Jointly convex in \beta_i, \beta_u. Can 
be solved by iteratively removing the 

mean and solving for beta

error regularizer



Rating prediction

Iterative procedure – repeat the 
following updates until convergence:

(exercise: write down derivatives and convince yourself of 
these update equations!)



Rating prediction

user predictor movie predictor

Looks good (and actually works 
surprisingly well), but doesn’t solve the 

basic issue that we started with

That is, we’re still fitting a function that 
treats users and items independently



Dimensionality reduction

We already have some tools that ought to 
help us, e.g. from week 3:

eigenvectors of

eigenvectors of

(square roots of)
eigenvalues of

Singular Value 
Decomposition

The “best” rank-K approximation (in terms of the MSE) consists 
of taking the eigenvectors with the highest eigenvalues



Dimensionality reduction

But! Our matrix of ratings is only partially 
observed; and it’s really big!

Missing ratings

SVD is not defined for partially observed matrices, and it is not 
practical for matrices with 1Mx1M+ dimensions

; and it’s really big!



Latent-factor models

Instead, let’s solve approximately using 
gradient descent

items

users

K-dimensional 
representation 
of each user

K-dimensional 
representation 
of each item



Latent-factor models

my (user’s)
“preferences”

HP’s (item) 
“properties”

Let’s write this as:



Latent-factor models

Let’s write this as:

Our optimization problem is then

error regularizer



Latent-factor models
Problem: this is certainly not convex



Latent-factor models
Oh well. We’ll just solve it 

approximately

Observation: if we know either the user 
or the item parameters, the problem 

becomes easy

e.g. fix gamma_i – pretend we’re fitting parameters for features



Latent-factor models
This gives rise to a simple (though 

approximate) solution

1) fix    . Solve 
2) fix    . Solve

3,4,5…) repeat until convergence

objective:

Each of these subproblems is “easy” – just regularized 
least-squares, like we’ve been doing since week 1. This 

procedure is called alternating least squares.



Latent-factor models

Movie features: genre, 
actors, rating, length, etc.

User features: 
age, gender, 
location, etc.

Observation: we went from a method 
which uses only features:

to one which completely ignores them:



Latent-factor models
Should we use features or not?
1) Argument against features:

Imagine incorporating features into the model like:

which is equivalent to:

knowns unknowns

but this has fewer degrees of freedom than a 
model which replaces the knowns by unknowns:



Latent-factor models
Should we use features or not?
1) Argument against features:

So, the addition of features adds no expressive power to the 
model. We could have a feature like “is this an action 

movie?”, but if this feature were useful, the model would 
“discover” a latent dimension corresponding to action 

movies, and we wouldn’t need the feature anyway

In the limit, this argument is valid: as we add more ratings 
per user, and more ratings per item, the latent-factor model 

should automatically discover any useful dimensions of 
variation, so the influence of observed features will disappear



Latent-factor models
Should we use features or not?

2) Argument for features:
But! Sometimes we don’t have many ratings per user/item

Latent-factor models are next-to-useless if either the user or 
the item was never observed before

reverts to zero if we’ve never seen the user before
(because of the regularizer)



Latent-factor models
Should we use features or not?

2) Argument for features:
This is known as the cold-start problem in recommender 

systems. Features are not useful if we have many 
observations about users/items, but are useful for new users 

and items.

We also need some way to handle users who are active, but 
don’t necessarily rate anything, e.g. through implicit 

feedback



Overview & recap

Tonight we’ve followed the 
programme below:

1. Measuring similarity between users/items for 
binary prediction (e.g. Jaccard similarity)

2. Measuring similarity between users/items for real-
valued prediction (e.g. cosine/Pearson similarity)
3. Dimensionality reduction for real-valued

prediction (latent-factor models)
4. Finally – dimensionality reduction for binary 

prediction



One-class recommendation

How can we use dimensionality 
reduction to predict binary

outcomes?
• In weeks 1&2 we saw regression and logistic
regression. These two approaches use the same 
type of linear function to predict real-valued and 

binary outputs
• We can apply an analogous approach to binary 

recommendation tasks



One-class recommendation

This is referred to as “one-class”
recommendation

• In weeks 1&2 we saw regression and logistic
regression. These two approaches use the same 
type of linear function to predict real-valued and 

binary outputs
• We can apply an analogous approach to binary 

recommendation tasks



One-class recommendation

Suppose we have binary (0/1) observations 
(e.g. purchases) or positive/negative 

feedback (thumbs-up/down)

or

purchased didn’t purchase liked didn’t evaluate didn’t like



One-class recommendation

So far, we’ve been fitting functions of the 
form

• Let’s change this so that we maximize the difference in 
predictions between positive and negative items

• E.g. for a user who likes an item i and dislikes an item j we 
want to maximize:



One-class recommendation

We can think of this as maximizing the 
probability of correctly predicting pairwise 

preferences, i.e.,

• As with logistic regression, we can now maximize the 
likelihood associated with such a model by gradient ascent

• In practice it isn’t feasible to consider all pairs of 
positive/negative items, so we proceed by stochastic gradient 
ascent – i.e., randomly sample a (positive, negative) pair and 
update the model according to the gradient w.r.t. that pair



Summary

Recap
1. Measuring similarity between users/items for 

binary prediction
Jaccard similarity

2. Measuring similarity between users/items for real-
valued prediction 

cosine/Pearson similarity
3. Dimensionality reduction for real-valued prediction 

latent-factor models
4. Dimensionality reduction for binary prediction

one-class recommender systems



Questions?

Further reading:
One-class recommendation:

http://goo.gl/08Rh59
Amazon’s solution to collaborative filtering at scale:

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
An (expensive) textbook about recommender systems:

http://www.springer.com/computer/ai/book/978-0-387-85819-7
Cold-start recommendation (e.g.):

http://wanlab.poly.edu/recsys12/recsys/p115.pdf

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf

