
CSE 258 – Lecture 7
Web Mining and Recommender Systems

Recommender Systems

Why recommendation?

The goal of recommender systems is…
• To help people discover new content

Why recommendation?

The goal of recommender systems is…
• To help us find the content we were

already looking for

Are these
recommendations

good or bad?

Why recommendation?

The goal of recommender systems is…
• To discover which things go together

Why recommendation?

The goal of recommender systems is…
• To personalize user experiences in

response to user feedback

Why recommendation?

The goal of recommender systems is…
• To recommend incredible products

that are relevant to our interests

Why recommendation?

The goal of recommender systems is…
• To identify things that we like

Why recommendation?

The goal of recommender systems is…
• To help people discover new content
• To help us find the content we were

already looking for
• To discover which things go together
• To personalize user experiences in

response to user feedback
• To identify things that we like

To model people’s
preferences, opinions,

and behavior

Recommending things to people

Suppose we want to build a movie
recommender

e.g. which of these films will I rate highest?

Recommending things to people

We already have
a few tools in our

“supervised
learning” toolbox
that may help us

Recommending things to people

Movie features: genre,
actors, rating, length, etc.

User features: age, gender,
location, etc.

Recommending things to people

With the models we’ve seen so far, we
can build predictors that account for…
• Do women give higher ratings than men?
• Do Americans give higher ratings than Australians?
• Do people give higher ratings to action movies?
• Are ratings higher in the summer or winter?
• Do people give high ratings to movies with Vin Diesel?

So what can’t we do yet?

Recommending things to people

Consider the following linear predictor
(e.g. from week 1):

Recommending things to people

But this is essentially just two separate
predictors!

user predictor movie predictor

That is, we’re treating user and movie
features as though they’re independent!

Recommending things to people

But these predictors should (obviously?)
not be independent

do I tend to give high ratings?

does the population tend to give high ratings to this genre of movie?

But what about a feature like “do I give
high ratings to this genre of movie”?

Recommending things to people
Recommender Systems go beyond the methods we’ve seen so

far by trying to model the relationships between people and
the items they’re evaluating

my (user’s)
“preferences”

HP’s (item)
“properties”

preference
Toward
“action”

preference toward
“special effects”

is the movie
action-
heavy?

are the special effects good?

Compatibility

Today

Recommender Systems
1. Collaborative filtering

(performs recommendation in terms of user/user and item/item
similarity)

2. Assignment 1
3. (next lecture) Latent-factor models

(performs recommendation by projecting users and items into
some low-dimensional space)

4. (next lecture) The Netflix Prize

Defining similarity between users & items

Q: How can we measure the similarity
between two users?

A: In terms of the items they
purchased!

Q: How can we measure the similarity
between two items?

A: In terms of the users who purchased
them!

Defining similarity between users & items

e.g.:
Amazon

Definitions

Definitions

= set of items purchased by user u

= set of users who purchased item i

Definitions

Or equivalently…

users

items

= binary representation of items purchased by u
= binary representation of users who purchased i

0. Euclidean distance

Euclidean distance:
e.g. between two items i,j (similarly defined between two users)

0. Euclidean distance

Euclidean distance:
e.g.: U_1 = {1,4,8,9,11,23,25,34}

U_2 = {1,4,6,8,9,11,23,25,34,35,38}
U_3 = {4}
U_4 = {5}

Problem: favors small sets, even if they
have few elements in common

1. Jaccard similarity

 Maximum of 1 if the two
users purchased exactly the

same set of items
(or if two items were purchased by the

same set of users)

 Minimum of 0 if the two users
purchased completely
disjoint sets of items

(or if the two items were purchased by
completely disjoint sets of users)

2. Cosine similarity

(vector representation of
users who purchased

harry potter)

(theta = 0)  A and B point in
exactly the same direction

(theta = 180)  A and B point
in opposite directions (won’t

actually happen for 0/1 vectors)

(theta = 90)  A and B are
orthogonal

2. Cosine similarity

Why cosine?
• Unlike Jaccard, works for arbitrary vectors

• E.g. what if we have opinions in addition to purchases?

bought and liked
didn’t buy

bought and hated

2. Cosine similarity

(vector representation of
users’ ratings of Harry

Potter)

(theta = 0)  Rated by the
same users, and they all agree

(theta = 180)  Rated by the
same users, but they

completely disagree about it

(theta = 90)  Rated by
different sets of users

E.g. our previous example, now with
“thumbs-up/thumbs-down” ratings

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

bought and liked
didn’t buy

bought and hated

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?

4. Pearson correlation

What if we have numerical ratings
(rather than just thumbs-up/down)?
• We wouldn’t want 1-star ratings to be parallel to 5-

star ratings
• So we can subtract the average – values are then

negative for below-average ratings and positive
for above-average ratings

items rated by both users average rating by user v

4. Pearson correlation

Compare to the cosine similarity:
Pearson similarity (between users):

Cosine similarity (between users):

items rated by both users average rating by user v

Collaborative filtering in practice

How does amazon generate their recommendations?

Given a product: Let be the set of users
who viewed it

Rank products according to: (or cosine/pearson)

.86 .84 .82 .79 …

Linden, Smith, & York (2003)

Collaborative filtering in practice

Note: (surprisingly) that we built
something pretty useful out of
nothing but rating data – we

didn’t look at any features of the
products whatsoever

Collaborative filtering in practice

But: we still have
a few problems left to address…
1. This is actually kind of slow given a huge

enough dataset – if one user purchases one
item, this will change the rankings of every
other item that was purchased by at least

one user in common
2. Of no use for new users and new items (“cold-

start” problems
3. Won’t necessarily encourage diverse results

CSE 258 – Lecture 7
Web Mining and Recommender Systems

Latent-factor models

Latent factor models

So far we’ve looked at approaches that
try to define some definition of user/user

and item/item similarity

Recommendation then consists of
• Finding an item i that a user likes (gives a high rating)
• Recommending items that are similar to it (i.e., items j

with a similar rating profile to i)

Latent factor models

What we’ve seen so far are
unsupervised approaches and whether
the work depends highly on whether we

chose a “good” notion of similarity

So, can we perform recommendations
via supervised learning?

Latent factor models

e.g. if we can model

Then recommendation
will consist of identifying

The Netflix prize
In 2006, Netflix created a dataset of 100,000,000 movie ratings

Data looked like:

The goal was to reduce the (R)MSE at predicting ratings:

Whoever first manages to reduce the RMSE by 10% versus
Netflix’s solution wins $1,000,000

model’s prediction ground-truth

This led to a lot of research on rating
prediction by minimizing the Mean-

Squared Error

(it also led to a lawsuit against Netflix, once somebody
managed to de-anonymize their data)

We’ll look at a few of the main
approaches

The Netflix prize

Rating prediction

Let’s start with the
simplest possible model:

user item

Rating prediction

What about the 2nd simplest model?

user item
how much does
this user tend to
rate things above

the mean?

does this item tend
to receive higher

ratings than others

e.g.

Rating prediction

The optimization problem becomes:

Jointly convex in \beta_i, \beta_u. Can
be solved by iteratively removing the

mean and solving for beta

error regularizer

Rating prediction

Iterative procedure – repeat the
following updates until convergence:

(exercise: write down derivatives and convince yourself of
these update equations!)

Rating prediction

user predictor movie predictor

Looks good (and actually works
surprisingly well), but doesn’t solve the

basic issue that we started with

That is, we’re still fitting a function that
treats users and items independently

Dimensionality reduction

We already have some tools that ought to
help us, e.g. from week 3:

eigenvectors of

eigenvectors of

(square roots of)
eigenvalues of

Singular Value
Decomposition

The “best” rank-K approximation (in terms of the MSE) consists
of taking the eigenvectors with the highest eigenvalues

Dimensionality reduction

But! Our matrix of ratings is only partially
observed; and it’s really big!

Missing ratings

SVD is not defined for partially observed matrices, and it is not
practical for matrices with 1Mx1M+ dimensions

; and it’s really big!

Latent-factor models

Instead, let’s solve approximately using
gradient descent

items

users

K-dimensional
representation
of each user

K-dimensional
representation
of each item

Latent-factor models

my (user’s)
“preferences”

HP’s (item)
“properties”

Let’s write this as:

Latent-factor models

Let’s write this as:

Our optimization problem is then

error regularizer

Latent-factor models
Problem: this is certainly not convex

Latent-factor models
Oh well. We’ll just solve it

approximately

Observation: if we know either the user
or the item parameters, the problem

becomes easy

e.g. fix gamma_i – pretend we’re fitting parameters for features

Latent-factor models
This gives rise to a simple (though

approximate) solution

1) fix . Solve
2) fix . Solve

3,4,5…) repeat until convergence

objective:

Each of these subproblems is “easy” – just regularized
least-squares, like we’ve been doing since week 1. This

procedure is called alternating least squares.

Latent-factor models

Movie features: genre,
actors, rating, length, etc.

User features:
age, gender,
location, etc.

Observation: we went from a method
which uses only features:

to one which completely ignores them:

Latent-factor models
Should we use features or not?
1) Argument against features:

Imagine incorporating features into the model like:

which is equivalent to:

knowns unknowns

but this has fewer degrees of freedom than a
model which replaces the knowns by unknowns:

Latent-factor models
Should we use features or not?
1) Argument against features:

So, the addition of features adds no expressive power to the
model. We could have a feature like “is this an action

movie?”, but if this feature were useful, the model would
“discover” a latent dimension corresponding to action

movies, and we wouldn’t need the feature anyway

In the limit, this argument is valid: as we add more ratings
per user, and more ratings per item, the latent-factor model

should automatically discover any useful dimensions of
variation, so the influence of observed features will disappear

Latent-factor models
Should we use features or not?

2) Argument for features:
But! Sometimes we don’t have many ratings per user/item

Latent-factor models are next-to-useless if either the user or
the item was never observed before

reverts to zero if we’ve never seen the user before
(because of the regularizer)

Latent-factor models
Should we use features or not?

2) Argument for features:
This is known as the cold-start problem in recommender

systems. Features are not useful if we have many
observations about users/items, but are useful for new users

and items.

We also need some way to handle users who are active, but
don’t necessarily rate anything, e.g. through implicit

feedback

Overview & recap

Tonight we’ve followed the
programme below:

1. Measuring similarity between users/items for
binary prediction (e.g. Jaccard similarity)

2. Measuring similarity between users/items for real-
valued prediction (e.g. cosine/Pearson similarity)
3. Dimensionality reduction for real-valued

prediction (latent-factor models)
4. Finally – dimensionality reduction for binary

prediction

One-class recommendation

How can we use dimensionality
reduction to predict binary

outcomes?
• In weeks 1&2 we saw regression and logistic
regression. These two approaches use the same
type of linear function to predict real-valued and

binary outputs
• We can apply an analogous approach to binary

recommendation tasks

One-class recommendation

This is referred to as “one-class”
recommendation

• In weeks 1&2 we saw regression and logistic
regression. These two approaches use the same
type of linear function to predict real-valued and

binary outputs
• We can apply an analogous approach to binary

recommendation tasks

One-class recommendation

Suppose we have binary (0/1) observations
(e.g. purchases) or positive/negative

feedback (thumbs-up/down)

or

purchased didn’t purchase liked didn’t evaluate didn’t like

One-class recommendation

So far, we’ve been fitting functions of the
form

• Let’s change this so that we maximize the difference in
predictions between positive and negative items

• E.g. for a user who likes an item i and dislikes an item j we
want to maximize:

One-class recommendation

We can think of this as maximizing the
probability of correctly predicting pairwise

preferences, i.e.,

• As with logistic regression, we can now maximize the
likelihood associated with such a model by gradient ascent

• In practice it isn’t feasible to consider all pairs of
positive/negative items, so we proceed by stochastic gradient
ascent – i.e., randomly sample a (positive, negative) pair and
update the model according to the gradient w.r.t. that pair

Summary

Recap
1. Measuring similarity between users/items for

binary prediction
Jaccard similarity

2. Measuring similarity between users/items for real-
valued prediction

cosine/Pearson similarity
3. Dimensionality reduction for real-valued prediction

latent-factor models
4. Dimensionality reduction for binary prediction

one-class recommender systems

Questions?

Further reading:
One-class recommendation:

http://goo.gl/08Rh59
Amazon’s solution to collaborative filtering at scale:

http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
An (expensive) textbook about recommender systems:

http://www.springer.com/computer/ai/book/978-0-387-85819-7
Cold-start recommendation (e.g.):

http://wanlab.poly.edu/recsys12/recsys/p115.pdf

http://goo.gl/08Rh59
http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
http://www.springer.com/computer/ai/book/978-0-387-85819-7
http://wanlab.poly.edu/recsys12/recsys/p115.pdf

