
Assignment 2: Attention and Transformers
Instructor: Yejin Choi CSE 517/447 Win 24

Due at 11:59pm PT, Feb 9, 2024
100 pt for 447 (+ 5 extra credit) / 110 pt for 517, 15% towards the final grade

In this assignment, you will explore the behavior of the attention operation, implement the attention
module from scratch within a transformer, and become familiar with fine-tuning a Huggingface model end-
to-end.

You will submit both your code and writeup (as PDF) via Gradescope. Remember to specify your
collaborators (including AI tools like ChatGPT) and how they contribute to the completion of your
assignment at the beginning of your writeup. If you work on the assignment independently, please specify so,
too. NOT properly acknowledging your collaborators will result in -2 % of your overall score
on this assignment. Please adhere to the assignment collaboration policy specified on the course website.

Required Deliverables

• Code Notebook: Each question has an associated Python notebook. You need to submit the note-
books for all of §1-3. Please download all three notebooks as Python files (.py) and submit them in
Gradescope.

• Write-up:

– For written answers and open-ended reports, produce a single PDF for §1-3 and submit it in
Gradescope. We recommend using Overleaf to typeset your answers in LATEX, but other legible
typed formats are acceptable. We do not accept hand-written solutions because grading hand-
written reports is incredibly challenging.

– The suggested page limit for each section is to make sure the reports do not get too long. We
would not penalize shorter reports as long as they contain all necessary grading components.
Longer reports do not directly result in higher scores. On the other hand, concise and on-point
reports will be more favorable.

Acknowledgement

This assignment is primarily designed by Yegor Kuznetsov, Liwei Jiang, Jaehun Jung, with invaluable
feedback from Alisa Liu, Melanie Sclar, Gary Liu, and Taylor Sorensen.

1



1 Understanding Attentions (20%)

As an introduction to this assignment, you will interact with the attention operation and play with its capa-
bilities/behavior in a simplified context. Our goal for this problem is to impart a basic intuitive understanding
of the mechanisms involved in attention.

Notebook: We have designed this question with the following Python notebook: A2S1.ipynb.

Deliverables:

1. Coding Exercises: You should complete the code blocks denoted by TODO: in the Python notebook.
To submit your code, download your notebook as a Python file (A2S1.py).

2. Write-up: Your report for §1 should be no more than three pages. However, you will most likely
be able to answer all questions within two pages.

1.1 Background on Self-Attention

Multi-head scaled dot product self-attention is the core building block of all transformer architectures. It can
be confusing for people seeing it for the first time, despite the motivations behind the design choices being
intuitive. For this problem, we will ignore scaling and multiple heads to focus on developing an intuition for
the behavior of dot product self-attention.

Recall that the attention operation requires computing three matrices Q,K, V .

• Q is a set of query vectors qi ∈ Rd.

• K is a set of key vectors ki ∈ Rd.

• V is a set of value vectors vi ∈ Rd.

We can simplify this by considering a single query vector. Each part within this question will clarify if
we’re asking for a single query vector q or a query matrix Q.

Dot product self-attention follows the following steps:

1. Pairwise similarities are computed to create pre-softmax attention scores A:

αi,j = qikj A = QKT

2. Softmax is applied across the last dimension as a normalization to produce the attention matrix A′:

α′
i,j =

exp(αi,j)∑
j exp(αi,j)

A′ = softmax(A)

3. Each output vector bi ∈ Rd is computed as a weighted sum of values using attention.

bi =
∑
j

α′
i,jvj O = A′V

2

https://colab.research.google.com/drive/1AaH9QTClxfF5T7RVW5FlhsegxhM3-rG8?usp=sharing


Notes for the Following Exercises:

• Most of the operations in this problem cannot be represented exactly, and there may be small deviations
between your crafted vs. target vectors or matrices. This is acceptable and expected. Solutions within
a 0.05 error (as reported in the notebook) will receive full credit.

• There are many different possible solutions to the following problems. And there may be shortcuts to
getting an answer without applying attention computation (like random guessing). However, in this
exercise, we ask you to devise a solution by thinking of the working mechanism of attention. Your
rationales of how you derive your solution should reflect such an understanding. Rationales that do
not involve any aspects of the internal mechanisms of attention are not eligible for points.

• Note that your solutions for this exercise don’t have to be a generalizable solution that handles all
kinds of K,V . They can be ad hoc to this specific example. But you’re also welcome to propose
generalizable solutions. You only need to give one solution for each question in this exercise.

• Please answer the following questions in your write-up.

1.2 Selection via Attention (10%)

Suppose we have the following K and V matrices with d = 3 and n = 4, produced from 4 tokens. K consists
of 4 vectors ki ∈ R3, and V consists of 4 vectors vi ∈ R3.

K =


0.47 0.65 0.60
0.64 0.50 −0.59

−0.03 −0.48 −0.88
0.43 −0.83 0.35

 V =


−0.07 −0.88 0.47
0.37 −0.93 −0.07

−0.25 −0.75 0.61
0.94 0.20 0.28


We will ask you to define a few query vectors that satisfy some conditions. For any requested query

vectors or matrices (q or Q), you may provide either numerical values, or an expression in terms of K,V or
the vectors contained within them. In this exercise, vectors such as vi are 0-indexed.

When we ask you to provide a query that does something, this means that the output vectors from
performing attention using the query you provide along with the given K,V would result in that operation
having been performed.

Hint: For one of the versions of the solutions, you may find it useful to define a “large number,” S for
finding a solution! Also, you can try to think of what matrix A do you need. But again, there are many
different possible solutions.

1. Define a query vector q (∈ R3) to “select” (i.e., return) the first value vector v0. Briefly explain how
you get your solution.

2. Define a query matrix Q (∈ R4×3) which results in an identity mapping – select all the value vectors.
Briefly explain how you get your solution.

3. What does attention’s ability to copy / select from input tokens when creating outputs imply for
language modeling? In other words, why might this be desirable? (1-3 sentences)

1.3 Averaging via Attention (10%)

Continue using the same K,V matrices for this section.
Hint: You can try to think of what matrix A do you need. But again, there are many different possible

solutions.

1. Define a query vector q (∈ R3) which averages all the value vectors. Briefly explain how you get your
solution.

3



2. Define a query vector q (∈ R3) which averages the first two value vectors. Briefly explain how you get
your solution.

3. What does the ability to average / aggregate (in some cases selectively) imply for language modeling?
In other words, why might this be desirable? (1-3 sentences)

1.4 Interactions within Attention (10% for 517, 5% extra credit for 447)

Unlike the tasks listed in §1.2 and §1.3, averaging just the first two value vectors is not reliably possible (i.e.
generalizable). Without changing your query q from §1.3.2 or the rest of K, change only the third key vector
k2 for each of the following cases.

1. Come up with a replacement for only the third key vector k2 such that the result of attention with the
same unchanged query q from §1.3.2 averages the first three value vectors. Briefly explain how you get
your solution.

2. Come up with a replacement for only the third key vector k2 such that the result of attention with the
same unchanged query q from §1.3.2 returns the third value vector v2. However, there is the condition
that k2 should have length = 1. This is not usually a restriction in attention, but is only for this
problem. Briefly explain how you get your solution.

3. Why is altering k2 able to impact an output which previously only considered the first two tokens?
(2-4 sentences)

4



2 Building Your Own Mini Transformer (40%)

In this part, you will implement multi-head scaled dot product self-attention and use it to train a tiny
decoder-only transformer using a modified fork of Andrej Karpathy’s minGPT implementation of a GPT-style
transformer. Finally, you will run a small experiment of your choosing and write a mini-report summarizing
your experiment and interpreting your results.

Notebook: We have designed this question with the following Python notebook: A2S2.ipynb

Deliverables:

1. Coding Exercises (§2.1): You should complete the code blocks denoted by TODO: in the Python
notebook. To submit your code, download your notebook as a Python file (A2S2.py). We will only
grade the codes you wrote for §2.1. §2.2 codes are not graded but will be useful for you
to write the report.

2. Write-up (§2.2): Your report for §2.2 should be no more than five pages. We will only grade
the write-up for §2.2.

2.1 Implementing Attention from Scratch (20%)

We have provided a very decomposed scaffold for implementing attention, and after filling in the implemen-
tation details, you should check your implementation against the one built into PyTorch. The intent for this
first part is to assist with understanding implementations of attention, primarily for working with research
code.

Useful resources that may help with this section include, but are not limited to:

• “Lecture 5: Attention & Transformers” slides.

• PyTorch’s documentation for torch.nn.functional.scaled dot product attention: lacks multi-
head attention, but is otherwise most excellent.

• The attention implementation in mingpt/model.py in the original minGPT repository.

Code style: This exercise has four steps, matched with corresponding functions in the notebook. This
style of excessively decomposing and separating out details would normally be bad design but is done this
way here to provide a step-by-step scaffold.

Code efficiency: Attention is a completely vectorizable operation. In order to make it fast, avoid using
any loops whatsoever. We will not grade down for using loops in your implementation, but it would likely
make the solution far slower and more complicated in most cases. In the staff solution, each function
except for self_attention() is a single line of code.

Coding exercises (in the Python notebook): Here, we provide high-level explanations of what each
function does in the Python notebook. In the notebook, you will complete code blocks denoted by
TODO:.

Step 0: Set up the projections for attention.

5

https://github.com/karpathy/minGPT
https://colab.research.google.com/drive/1slSlIuxm6qYiHQH5PrcbpmzHvHuW5vF5?usp=sharing
https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention
https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L29
https://github.com/karpathy/minGPT


• init_qkv_proj(): You do NOT need to implement this function.

Initialize the projection matrices WQ,WK ,WV . Each of these can be defined as an nn.Linear

from n_embd features to n_embd features. Attention does allow some of these to be different, but
this particular model (i.e., minGPT) has the same output features dimension for all three. Do
NOT disable bias. This function is passed into the modified model on initialization, and so does
not need to be used in your implementation of self_attention().

This function should return a tuple of three PyTorch Modules. Internally, your WQ,WK ,WV will
be used to project the input tokens a into the Q,K, V . Each row of Q is one of the qi.

• self_attention(): As you work on Step 1-3, integrate the functions from each section into this
function and test the behaviors you expect to work.

Stitch together all the required functions as you work on this section within this function. Start
with a minimal implementation of scaled dot product attention without causal masking or multiple
heads.

As you gradually transform it into a complete causal multi-head scaled dot-product self-attention
operation, there are several provided cells comparing your implementation with pytorch’s built-in
implementation multi_head_attention_forward with various features enabled. If you see close
to 0 error relative to the expected output, it’s extremely likely that your implementation is correct.

While it is allowed, we do not recommend looking into the internals of multi_head_attention_forward
as it is extremely optimized for performance and features over readability, and is several hundred
lines of confusing variables and various forms of input handling. Instead, see the above listed
“useful resources.”

Step 1: Implement the core components of attention.

• pairwise_similarities(): Implement this function.

Dot product attention is computed via the dot product between each query and each key. Comput-
ing the dot product for all αi,j = kjqi is equivalent to multiplying the matrices with a transpose.
One possible matrix representation for this operation is A = QKT .

Hint: PyTorch’s default way to transpose a matrix fails with more than two dimensions, which
we have due to the batch dimension. As such, you can specify to torch.transpose the last two
dimensions.

• attn_scaled(): Implement this function.
Attention is defined with a scale factor on the pre-softmax scores. This factor is calculated as
follows:

1√
n embd/n head

• attn_softmax(): Implement this function.
A now contains an unnormalized “relevancy” score from each token to each other token. Attention
involves a softmax along one dimension. There are multiple ways to implement this, but we
recommend taking a look at torch.nn.functional.softmax. You will have to specify along which
dimension the softmax is done, but we leave figuring that out to you. This step will give us the
scaled and normalized attention A′.

• compute_outputs(): Implement this function.
Recall that we compute output for each word or token as weighted sum of values, weighed by
attention. Once again, we can actually express this as a matrix multiplication O = A′V .

Test 1: Once you implement functions from Step 1 and integrate them in self_attention(), we have provided
a cell for you to test this portion of your implementation.

6

https://pytorch.org/docs/stable/generated/torch.transpose
https://pytorch.org/docs/stable/generated/torch.nn.functional.softmax


Step 2: Implement causal masking for language modeling.

This requires preventing tokens from attending to tokens in the future via a triangular mask. Enable
causal language modeling when the causal flag in the parameters of self_attention is set to
True.

• make_causal_mask(): Implement this function.
The causal mask used in a language model is a matrix used to mask out elements in the attention
matrix. Each token is allowed to attend to itself and to all previous tokens. This leads the causal
mask to be a triangular matrix containing ones for valid attention and zeros when attention would
go backwards in the sequence. We suggest looking into documentation of torch.tril.

• apply_causal_mask(): Implement this function.
Entries in the attention matrix can be masked out by overwriting entries with −∞ before the
softmax. Make sure it’s clear why this results in the desired masking behavior; consider why it
doesn’t work to mask attention entries to 0 after the softmax. You may find torch.where helpful,
though there are many other ways to implement this part.

Test 2: Test causal masking in your attention implementation. Also, make sure your changes didn’t break the
first test.

Step 3: Implement multi-head attention.

Split and reshape each of Q,K, V at the start, and merge the heads back together for the output.

In order to match multi_head_attention_forward, we omit the transformation we would usually
apply at the end from this function. Therefore when it is used later, an output projection needs to be
applied to the attention’s output. This is already implemented in our modified minGPT.

• split_heads_qkv(): You do NOT need to implement this function.
We have provided a very short utility function for applying split_heads to all three of Q,K, V .
No implementation is necessary for this function, and you may choose not to use it.

• split_heads(): Implement this function.
Before splitting into multiple heads, each of Q,K, V has shape (B, n_tok, n_embd), where B

is the batch size, n_tok is the sequence length, n_embd is the embedding dimensionality. Note
that PyTorch’s matrix multiplication is batched – only multiplying using the last two dimensions.
Thus, the matrix multiplication still works with the additional batch dimension of Q,K, V .1

Since we want all heads to do attention separately, we want the head dimension to be before the last
two dimensions. A sensible shape for this would be (B, n_heads, n_tok, n_embd_per_head),
where n_heads is the number of heads and n_embd_per_head is the embedding dimensional-
ity of each head (n_embd / n_heads). A single reshaping cannot convert from a tensor of
shape (B, n_tok, n_embd) to (B, n_heads, n_tok, n_embd_per_head). Moreover, we want
n_heads and n_embd_per_head to be split from n_embd and leave B and n_tok essentially un-
touched.

To make the steps clear:

First, reshape from (B, n_tok, n_embd) to (B, n_tok, n_heads, n_embd_per_head), where
n_embd = n_heads*n_embd_per_head.

Then, transpose the n_tok and n_heads dimensions from (B, n_tok, n_heads, n_embd_per_head)

to (B, n_heads, n_tok, n_embd_per_head).

• merge_heads(): Implement this function.
When merging, you want to reverse/undo the operations done for splitting.

1If you’re interested, see details on batched matrix multiplication in https://pytorch.org/docs/stable/generated/torch.

bmm.html.

7

https://pytorch.org/docs/stable/generated/torch.tril
https://pytorch.org/docs/stable/generated/torch.where
https://pytorch.org/docs/stable/generated/torch.bmm.html
https://pytorch.org/docs/stable/generated/torch.bmm.html


First, transpose from (B, n_heads, n_tok, n_embd_per_head) to (B, n_tok, n_heads,

n_embd_per_head).

Then, reshape from (B, n_tok, n_heads, n_embd_per_head) to (B, n_tok, n_embd).

Note that you can let PyTorch infer one dimension’s size if you enter −1 for it.

Test 3: All three testing cells should result in matching outputs now.

2.2 Experiment with Your Implementation of Attention (20%)

Now that you have a working implementation of Causal Multi-Head Scaled Dot Product Self-Attention,2, you
will experiment with the mini transformer that you built out and write a report on your exploration.

Here’s a list of suggested exploration topics/directions for modifying attention:

• Change dot-product to a different, custom operation which also takes two vectors and returns a number.

• Why do we need all three of (query, key, value)? See what happens if the projection used to create
them is shared between two (or all three). Which versions of this are capable of learning anything, and
which ones aren’t?

• minGPT uses learned positional embeddings, and we truncate all sequences to 100 tokens during
training, so it’s expected to do poorly with tokens outside that limit when tested. Implement a
mathematical positional encoding (e.g., sinusoidal positional encoding) and see if it makes it work
properly with longer sequences.

• What actually happens if we try the naive masking approach of setting attention values to 0 after the
softmax instead of setting to −∞ before the softmax?

• Currently, WQ,WK ,WV are simply projection matrices. Why not make them more interesting, like
turning each into a small fully connected network? Alternatively, what if we put a small nonlinearity
on one of them – does it cause anything interesting?

• (If you want a bigger challenge for no extra credit) Replicate the main change(s) to attention in
Attention Free Transformer

• (If you want a bigger challenge for no extra credit) Replicate the main change(s) to attention in Fast
Attention

Your explorations could be based on the above suggested directions, but you are also welcome to explore
other exciting aspects of the internal mechanisms of attention. You are also not limited to only exploring
changes to the implementation of attention – you can fork our provided git repo and change any internal
details of the overall transformer model. By changing the cloned repository to your fork, you can have
persistent changes to any part of the architecture.

This exploration is fairly open-ended, but we want you to focus on ablating, changing, or otherwise
testing/evaluating some aspect of attention or transformers as a whole. For most experiment choices, you are
encouraged to report on the training performance and validation perplexity and use it to evaluate/interpret
the model’s behavior. You can also consider a qualitative inspection; for example, if your chosen experiment
completely ruins performance, are there any particular patterns in the sampled text?

Overall, try to develop interesting ways to make changes to attention and transformers, and try NOT to
simply toy with hyperparameters like n_heads.

2This isn’t an official name – just wanted to stress what all the components are.

8

https://arxiv.org/pdf/2105.14103.pdf
https://ieeexplore.ieee.org/document/9265219
https://ieeexplore.ieee.org/document/9265219


Write a mini-report for the results of your experimentation. The report does NOT have to be
“research quality” or answer completely new questions – simply pick any aspect you’re interested in learning
more about, and use this as an opportunity to explore the internals of a transformer, even if your experiment
is simply breaking part of the architecture. Please limit your report to no more than five pages. Write
for an audience familiar with NLP but not the internals of this question.

Specifically, we will be looking for and grading on the following aspects:

1. Explain the setup of the experiment, including the motivating idea and relevant background.

2. Report your results. This will likely include graph(s) and/or table(s), as well as explanations of results.
We expect at least one relevant graph/table which shows your results at a glance.

3. Interpret your results. What does this mean for using attention in language modeling? Do your results
support some aspect of the design of attention?

§2.2 will be graded entirely on your report. If your experiment is simply varying a hyperparameter
(such as embedding dimension, number of heads, or scaling factor) it is still possible to get full points, but the
report will be held to significantly higher standards (and thus we encourage you to come up with experiments
beyond this level of modification). On the other hand, if your report replicates the core changes from a
research paper which (non-trivially) modifies the attention mechanism or something else that’s fundamental
to transformers, we will be considerably more lenient in our evaluation of your report.

Starter code: We have provided some starter code for you to train the tiny GPT model using the building
blocks you implemented in §2.1. Specifically, we set it up to train on the same data used in Assignment 1
Question 1, with a similar tokenization scheme. Although we will not ask questions about the given training
setup, take some time to read through it and make sure you understand it. Looking through minGPT code
could also help you understanding how different components of your model are connected.

While §2.1 was completely guided, the code for §2.2 is merely a start; you are encouraged to rewrite any
and all portions of the code we provide as you see fit. We make no guarantees about the provided code and
training code for this question has not been tuned in any way beyond getting it to run, and is nowhere near
optimal. Part of your task for §2.2 is to work past this detail and improve it for your experiment if necessary.

Code efficiency: Even the smallest usable transformer configuration in minGPT is painfully slow on the
CPU available in a Colab notebook. As such, for experiments in §2.2, you should switch the notebook to use
GPU – everything is already configured to train the model on GPU if it is available. The train runner will
print whether it is using cpu or cuda. Training on cpu will take hours; training on cuda will take minutes.

9



3 HuggingFace (40%)

In this part of the assignment, you will complete a codebase used to finetune a pretrained language model
(RoBERTa-base) end-to-end on a sentiment analysis task (SST-2) using the convenient infrastructure and
tools provided by HuggingFace. With your implementation, you’ll write a short report to answer questions
of your implementation, and analyze the behaviors of your trained model. We will grade both the code
and the report.

Notebook: You will use the following Python notebook for this exercise: A2S3.ipynb.

Deliverables:

1. Coding Exercises: You should complete the code blocks denoted by TODO: in the Python notebook.
To submit your code, download your notebook as a Python file (A2S3.py).

2. Write-up: Your report for this part should be no more than four pages, and should answer all
questions listed in §3.2.

3.1 Background

The pretrain-then-finetune pipeline is a common recipe for large language model (LLM) applications and
research. Essentially, the pretraining step leverages the vast amount of raw data gathered through the
internet to train a model in an unsupervised way to capture the underlying knowledge patterns and structure
of language. Next, the finetuning step customizes pretrained models to specific applications and tasks,
building on top of their existing capabilities. In this exercise, you will complete a codebase that is used to
finetune a RoBERTa-base model on a sentiment analysis task (SST-2) using the HuggingFace library.

Pretrained Model RoBERTa is a Transformers-based bidirectional encoder-only language model pretrained
with masked language modeling objective3. Encoder-only models like RoBERTa are useful for encoding input
sequences for classification tasks, rather than open-ended text generation. In this exercise, you will finetune
a pretrained RoBERTa-base model that is already provided for you by HuggingFace.

Dataset/Task The Stanford Sentiment Treebank (SST-2) is a corpus labeled for the sentence-level senti-
ment analysis task, consisting of 11,855 single sentences extracted from movie reviews.4 Each data point in
the dataset consists of an input sentence and an output sentiment label (1 for positive and 0 for negative).

3.2 Finetuning Your Own RoBERTa Classifier

The provided Python notebook breaks the task down into the following six steps:

• Step 0: Preperation

• Step 1: Defining PyTorch Dataset and Dataloader

• Step 2: Load Data

• Step 3: Training and Evaluation

• Step 4: Main Training Loop

• Step 5: Testing the Final Model

3The RoBERTa paper: https://arxiv.org/abs/1907.11692
4See details of SST-2 at https://huggingface.co/datasets/sst2.

10

https://colab.research.google.com/drive/13oBf6_e6xc9W9uJIxjndX1z-SwPRysRw?usp=sharing
https://arxiv.org/abs/1907.11692
https://huggingface.co/datasets/sst2


For each of Step 1-5, you will complete the following two tasks:

1. Coding Exercises in the notebook: You will complete the the code blocks denoted by TODO:.

2. Questions to Answer in the report/write-up: You will answer questions denoted by Q:.

For the full context of this exercise, please refer to the notebook. You should be able to answer the
questions once you finish implementing the code blocks. As the Coding Exercises and Questions to
Answer are interleaving and interdependent, Questions to Answer are best understood in conjunction
with Coding Exercises in the notebook. However, to streamline your report/write-up, we list the questions
below as a checklist for your report.

Step 1: Defining PyTorch Dataset and Dataloader

Q1.1: Explain the usages of the following arguments when you encode the input texts: padding,
max length, truncation, return tensors.

Q1.2: For the above arguments, explain what are the potential advantages of setting them to the default
values we provide.

Step 2: Loading Data

Q2.1: What are the lengths of train, validation, test datasets?

Q2.2: Explain the role of each of the following parameters: batch size, shuffle, collate fn, num workers

given to the DataLoader in the above code block.

Q2.3: Write the type and shape (if the type is tensor) of input ids, attention mask, and label encoding

in batch and explain what these elements represent.

Step 3: Training and Evaluation

Q3.1: For the three lines of code you implemented for computing gradients and updating parameters
using optimizer, explain what each of the lines does, respectively.

Q3.2: Explain what setting the model to training and evaluation modes do, respectively.

Q3.3: Explain what with torch.no grad() does in the evaluation() function.

Step 4: Main Training Loop

Q4.1: With the following default hyperparameters we provide, plot both training and validation loss
curves across 10 epochs in a single plot (x-axis: num of the epoch; y-axis: acc). You can draw
this plot with a Python script or other visualization tools like Google Sheets. (batch size = 64,
learning rate = 5e-5, num epochs = 20, model name = ”roberta-base”)

Q4.2: Describe the behaviors of the training and validation loss curves you plotted above. At which epoch
does the model achieve the best accuracy on the training dataset? What about the validation
dataset? Do training and validation curves have the same trend? Why does the current trend
happen?

Q4.3: Why do you shuffle the training data but not the validation data?

Q4.4: Explain the functionality of optimizers.

Q4.5: Experiment with two other optimizers defined in torch.optim for the training the model with
the default hyperparameters we give you. What is the difference between AdamW and these two
new optimizers? Back up your claims with empirical evidence.

11



Q4.6: Experiment with different combinations of batch size, learning rate, and num epochs. Your
goal is to pick the final, best model checkpoint based on the validation dataset accuracy. Describe
the strategy you used to try different combinations of hyperparameters. Why did you use this
strategy?

Q4.7: What are the batch size, learning rate, and num epochs of the best model checkpoint that
you picked? What are the training accuracy and validation accuracy?

Step 5: Testing the Final Model

Q5.1: What’s the test set accuracy of the best model?

12


	Understanding Attentions (20%)
	Background on Self-Attention
	Selection via Attention (10%)
	Averaging via Attention (10%)
	Interactions within Attention (10% for 517, 5% extra credit for 447)

	Building Your Own Mini Transformer (40%)
	Implementing Attention from Scratch (20%)
	Experiment with Your Implementation of Attention (20%)

	HuggingFace (40%)
	Background
	Finetuning Your Own RoBERTa Classifier


