CS246: Mining Massive Data Sets Winter 2020

Problem Set 4

Please read the homework submission policies at http://cs246.stanford.edu.

1 Implementation of SVM via Gradient Descent (30
points)
Here, you will implement the soft margin SVM using different gradient descent methods as

described in the section 12.3.4 of the textbook. To recap, to estimate the w,b of the soft
margin SVM, we can minimize the cost:

d n d
fw.b) =5 D> (@) + D max {0, 1—y (Z wW gl 4 b) } : (1)

=1

—_

In order to minimize the function, we first obtain the gradient with respect to w?), the jth
item in the vector w, as follows.

V.o f(w,b) = %Lb OZ OL( :z:z,yz | 2)

where:

OL(ws,y;) { 0 if y; (x;-w4b) > 1

dwl9) —yixz(-j ) otherwise.

Now, we will implement and compare the following gradient descent techniques:

1. Batch gradient descent: Iterate through the entire dataset and update the param-
eters as follows:
k=0
while convergence criteria not reached do
for j=1,...,d do
Update w) < wl) — 9V, i) f(w,b)
end for
Update b < b —nV,f(w,b)
Update k +— k+1
end while

where,
n is the number of samples in the training data,
d is the dimensions of w,
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7 is the learning rate of the gradient descent, and
Vo) f(w,b) is the value computed from computing equation (2) above and V,f(w,b)
is the value computed from your answer in question (a) below.

The convergence criteria for the above algorithm is Ay, < €, where

[ frma(w,b) = fi(w, b)| x 100
A%cost = fk71<w, b) . (3)

where,

fr(w,b) is the value of equation (1) at kth iteration,

Aot s computed at the end of each iteration of the while loop.
Initialize w = 0,b = 0 and compute fo(w,b) with these values.
For this method, use n = 0.0000003, ¢ = 0.25

. Stochastic gradient descent: Go through the dataset and update the parameters,
one training sample at a time, as follows:

Randomly shuffle the training data
1=1,k=0
while convergence criteria not reached do
for j=1,...,d do
Update w) < wl) —nV i) fi(w,b)
end for
Update b < b —nV, f;(w,b)
Update i < (i mod n)+ 1
Update k <+ k+1
end while

where,

n is the number of samples in the training data,

d is the dimensions of w,

7 is the learning rate and

Vo) fi(w, ) is defined for a single training sample as follows:

9 fi(w,b) () OL (i, yi)

vw(j)fi(w7b)—w—w +CW

(Note that you will also have to derive V,f;(w,b), but it should be similar to your

solution to question (a) below.

The convergence criteria here is AW

cost < €, Where

AL 0.5% A%-D + 0.5 % Ageost,

cost — cost

where,
k = iteration number, and
Agcos 1S same as above (equation 3).

Calculate Acost, Ageost at the end of each iteration of the while loop.
Initialize Agpsy = 0, w = 0,b = 0 and compute fo(w,b) with these values.
For this method, use n = 0.0001, ¢ = 0.001.
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3. Mini batch gradient descent: Go through the dataset in batches of predetermined
size and update the parameters as follows:

Randomly shuffle the training data
l=0,k=0
while convergence criteria not reached do
for j=1,...,d do
Update w) « wl) —nV ) fi(w,b)
end for
Update b < b —nV, fi(w,b)
Update [ < (I +1) mod ((n + batch_size — 1) /batch_size)
Update k + k+1
end while

where,

n is the number of samples in the training data,

d is the dimensions of w,

7 is the learning rate,

batch_size is the number of training samples considered in each batch, and
Vo fi(w,b) is defined for a batch of training samples as follows:

min(n,(l+1)xbatch_size
Ofi(w,b .
Vi filw,b) = L@)) — w9 + ¢ Z

ow
i=lxbatch_size+1

) aL(iEz‘, ?/z)
owW)
(k)

cos

A(k)

cos

The convergence criteria is A, < €, where

t — 0.5 * Ag;s_tl) +0.5 % A%costa

k = iteration number,
and Ag.os is same as above (equation 3).

Calculate Ao, Ageost at the end of each iteration of the while loop.
Initialize Aoy = 0, w = 0,b = 0 and compute fo(w,b) with these values.
For this method, use n = 0.00001, ¢ = 0.01, batch_size = 20.

(a) [5 Points]

Notice that we have not given you the equation for, V,f(w,b).
Task: What is V,f(w,b) used for the Batch Gradient Descent Algorithm?
(Hint: It should be very similar to V) f(w,b).)

(b) [25 Points]

Task: Implement the SVM algorithm for all of the above mentioned gradient descent tech-
niques. For this problem, you are allowed to keep the dataset in memory, and
you do not need to use Spark.
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Use C' = 100 for all the techniques. For all other parameters, use the values specified in the
description of the technique. Note: update w in iteration ¢ + 1 using the values computed
in iteration 7. Do not update using values computed in the current iteration!

Run your implementation on the data set in q1/data. The data set contains the following
files :

1. features.txt : Each line contains features (comma-separated values) for a single
datapoint. It has 6414 datapoints (rows) and 122 features (columns).

2. target.txt : Each line contains the target variable (y = -1 or 1) for the corresponding
row in features.txt.

Task: Plot the value of the cost function fi(w,b) vs. the number of iterations (k). Report
the total time taken for convergence by each of the gradient descent techniques. What do
you infer from the plots and the time for convergence?

The diagram should have graphs from all the three techniques on the same plot.

As a sanity check, Batch GD should converge in 10-300 iterations and SGD between 500-
3000 iterations with Mini Batch GD somewhere in-between. However, the number of itera-
tions may vary greatly due to randomness. If your implementation consistently takes longer
though, you may have a bug.

What to submit

(i) Equation for V,f(w,b). [part (a)]

(ii) Plot of fy(w,b) vs. the number of updates (k). Total time taken for convergence by
each of the gradient descent techniques. Interpretation of plot and convergence times.

[part (b)]
(i) Submit the code on Gradescope submission website. [part (b)]
2 Decision Tree Learning (20 points)

In this problem, we want to construct a decision tree to find out if a person will enjoy beer.

Definitions. Let there be k£ binary-valued attributes in the data.

We pick an attribute that maximizes the gain at each node:

G =1(D) = (I(Dr) + I(Dgr)); (4)


q1/data
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where D is the given dataset, and D; and Dpg are the sets on left and right hand-side
branches after division. Ties may be broken arbitrarily.

There are three commonly used impurity measures used in binary decision trees: Entropy,
Gini index, and Classification Error. In this problem, we use Gini index and define I(D) as

follows':
1(D) = D] x (1 - Zp?) |

where:

e |D| is the number of items in D;
e 1> p?is the gini index;

e p; is the probability distribution of the items in D, or in other words, p; is the fraction
of items that take value ¢ € {4, —}. Put differently, p, is the fraction of positive items
and p_ is the fraction of negative items in D.

Note that this intuitively has the feel that the more evenly-distributed the numbers are, the
lower the > p?, and the larger the impurity.

(a) [10 Points]

Let £ = 3. We have three binary attributes that we could use: “likes wine”, “likes running”
and “likes pizza”. Suppose the following:

e There are 100 people in sample set, 40 of whom like beer and 60 who don’t.

Out of the 100 people, 50 like wine; out of those 50 people who like wine, 20 like beer.

Out of the 100 people, 30 like running; out of those 30 people who like running, 20 like
beer.

Out of the 100 people, 80 like pizza; out of those 80 people who like pizza, 30 like beer.

Task: What are the values of G (defined in Equation 4) for wine, running and pizza at-
tributes? Which attribute would you use to split the data at the root if you were to maximize
the gain G using the gini index metric defined above?

!As an example, if D has 10 items, with 4 positive items (i.e. 4 people who enjoy beer), and 6 negative
items (i.e. 6 who do not), we have I(D) = 10 x (1 — (0.16 + 0.36)).
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(b) [10 Points]

Let’s consider the following example:

e There are 100 attributes with binary values aq, as, as, ..., aigpo.

e Let there be one example corresponding to each possible assignment of 0’s and 1’s to
the values ay, as, as...,a00. (Note that this gives us 2!% training examples.)

e Let the values taken by the target variable y depend on the values of a; for 99% of the
datapoints. More specifically, of all the datapoints where a; = 1, let 99% of them are
labeled +. Similarly, of all the datapoints where a; = 0, let 99% of them are labeled
with —. (Assume that the values taken by y depend on as,as, ..., ajg for fewer than
99% of the datapoints.)

e Assume that we build a complete binary decision tree (i.e., we use values of all at-
tributes).

Task: Explain what the decision tree will look like. (A one line explanation will suffice.)
Also, in 2-3 sentences, identify what the desired decision tree for this situation should look
like to avoid overfitting, and why.(The desired decision tree isn’t necessarily a complete
binary decision tree)

What to submit

(i) Values of G for wine, running and pizza attributes. [part (a)]
(ii) The attribute you would use for splitting the data at the root. [part (a)]

(iii) Explain what the decision tree looks like in the described setting. Explain how a
decision tree should look like to avoid overfitting. (1-2 lines each) [part (b)]

3 Clustering Data Streams (20 points)

Introduction. In this problem, we study an approach for clustering massive data streams.
We will study a framework for turning an approximate clustering algorithm into one that can
work on data streams, i.e., one which needs a small amount of memory and a small number
of (actually, just one) passes over the data. As the instance of the clustering problem, we
will focus on the k-means problem.
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Definitions. Before going into further details, we need some definitions:

The function d : R? x R? — R* denotes the Euclidean distance:

d(z,y) = [z —yl|2.
e For any x € RP and T C RP, we define:

d(xz,T) = min{d(zx, z) }.

zeT
Having subsets S, T C RP, and a weight function w : S — R™, we define:

costy, (S, T) = Zw(x)d(x,T)z.

€S

Finally, if for all x € S we have w(x) = 1, we simply denote cost,, (S, T) by cost(S,T).

Reminder: k-means clustering. The k-means clustering problem is as follows: given a
subset S C R, and an integer k, find the set T' (with |T'| = k), which minimizes cost(S,T).
If a weight function w is also given, the k-means objective would be to minimize cost,, (S, T,
and we call the problem the weighted k-means problem.

Strategy for clustering data streams. We assume we have an algorithm ALG which is
an a-approximate weighted k-means clustering algorithm (for some v > 1). In other words,
given any S C RP, k € N, and a weight function w, ALG returns a set T C R?, |T| = k, such
that:

costy, (S, T) < « |rTr/1‘ink{costw(S, )}.

We will see how we can use ALG as a building block to make an algorithm for
the k-means problem on data streams.

The basic idea here is that of divide and conquer: if S is a huge set that does not fit into
main memory, we can read a portion of it that does fit into memory, solve the problem on
this subset (i.e., do a clustering on this subset), record the result (i.e., the cluster centers
and some corresponding weights, as we will see), and then read a next portion of S which
is again small enough to fit into memory, solve the problem on this part, record the result,
etc. At the end, we will have to combine the results of the partial problems to construct a
solution for the main big problem (i.e., clustering 5).

To formalize this idea, we consider the following algorithm, which we denote as ALGSTR:

e Partition S into ¢ parts Sy,...,Ss.

e For each i = 1 to ¢, run ALG on S; to get a set of k centers T; = {t;1,ti, ..., tu},
and assume {Si1, Si2, ..., St} is the corresponding clustering of S; (i.e., S;; = {x €
Sil d(w,tiy) < d(z,tiy) V5" # j, 1 < j' < k}).
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e Let § = Ule T;, and define weights w(t;;) = |.Si;|-
e Run ALG on S with weights w, to get k centers T

e Return 7.

Now, we analyze this algorithm. Assuming 7™ = {¢],...,%;} to be the optimal k-means
solution for S (that is, 7" = argmin g _;{cost(S,7")}), we would like to compare cost(S, T')
(where T is returned by ALGSTR) with cost(S, 7).

A small fact might be useful in the analysis below: for any (a,b) € Rt we have:

(a+b)* < 2a” + 2%

(a) [5pts]

First, we show that the cost of the final clustering can be bounded in terms of the total cost
of the intermediate clusterings:

Task: Prove that:

¢
cost(S,T) < 2 - costy (S, T) + QZ cost(S;, T;).

=1

Hint: You might want to use Triangle Inequality for Euclidean distance d.

(b) [5pts]

So, to bound the cost of the final clustering, we can bound the terms on the right hand side
of the inequality in part (a). Intuitively speaking, we expect the second term to be small
compared to cost(S,T™), because T* only uses k centers to represent the data set (5), while
the T;’s, in total, use k¢ centers to represent the same data set (and k¢ is potentially much
bigger than k). We show this formally:

Task: Prove that: ,

Z cost(S;, T;) < a - cost(S,T7).

i=1

(c) [10pt]

Prove that ALGSTR is a (4a” + 6a)-approximation algorithm for the k-means problem.

Task: Prove that:
cost(S,T) < (4a® + 6a) - cost(S, T*).
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Hint: You might want to first prove two useful facts, which help bound the first term on the
right hand side of the inequality in part (a):

costy (S, T) < o - costw(g, T").

¢
costy, (S, T%) < 2 Z cost(S;, T;) + 2 - cost (S, T™).

=1

Additional notes: We have shown above that ALGSTR is a (4a? + 6a)-approximation
algorithm for the k-means problem. Clearly, 402 4+ 6a > «a, so ALGSTR has a somewhat
worse approximation guarantee than ALG (with which we started). However, ALGSTR is
better suited for the streaming application, as not only it takes just one pass over the data,
but also it needs a much smaller amount of memory.

Assuming that ALG needs ©(n) memory to work on an input set S of size n (note that just
representing S in memory will need Q(n) space), if we partitioning S into \/n/k equal parts,
ALGSTR can work with only O(v/nk) memory. (Like in the rest of the problem, k represents
the number of clusters per partition.)

Note that for typical values of n and k, assuming k < n, we have vnk < n. For instance,
with n = 10%, and & = 100, we have vnk = 10*, which is 100 times smaller than n.

What to submit
(a) Proof that cost(S,T) < 2 - costy (S, T) + 2 S cost(S;, Th).
(b) Proof that Zle cost(S;, T;) < a - cost(S, T%).

(c) Proof that cost(S,T) < (4a? + 6a) - cost(S, T*).

4 Data Streams (30 points)

In this problem, we study an approach to approximating the frequency of occurrences of
different items in a data stream. Assume S = (aq,as, ..., aq;) is a data stream of items from
the set {1,2,...,n}. Assume for any 1 < i <n, F[i] is the number of times ¢ has appeared
in S. We would like to have good approximations of the values F[i] (1 <i < n) at all times.

A simple way to do this is to just keep the counts for each item 1 < i < n separately. However,
this will require O(n) space, and in many applications (e.g., think online advertising and
counts of user’s clicks on ads) this can be prohibitively large. We see in this problem that
it is possible to approximate these counts using a much smaller amount of space. To do so,
we consider the algorithm explained below.
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Strategy. The algorithm has two parameters d,¢ > 0. It picks ’—log H independent hash
functions:

Vj e |[1; [log?”] oy {20 = {12, m}

where log denotes natural logarithm. Also, it associates a count ¢;, to any 1 < j < ﬂog H
and 1 < z < (ﬂ In the beginning of the stream, all these counts are initialized to 0.
Then, upon arrival of each aj, (1 < k < t), each of the counts ¢; ;) (1 < j < [log1]) is
incremented by 1.

For any 1 < i < n, we define F[i] = min;{c; ;) We will show that F'[i] provides a good
approximation to F'[d].

Memory cost. Note that this algorithm only uses O (% log %) space.

Properties. A few important properties of the algorithm presented above:

e Forany 1 <i<n:

e Forany 1 <i<mnand1<j<[log(3)]:

E [ein,0] < FIli] + Z(t — F[i]).

(a) [10 Points]

Prove that:

Pr|Fli] < F[i] + et] >1-4.
Hint: Use Markov inequality and the property of independence of hash functions.

Based on the proof in part (a) and the properties presented earlier, it can be inferred that
Fi] is a good approximation of F/[i] for any item i such that F[i] is not very small (compared
to t). In many applications (e.g., when the values F[i] have a heavy-tail distribution), we
are indeed only interested in approximating the frequencies for items which are not too

infrequent. We next consider one such application.

(b) [20 Points]

Warning. This implementation question requires substantial computation time Python
implementation reported to take 15min - 1 hour. Therefore, we advise you to start early.
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Dataset. The dataset in q4/data contains the following files:

1. words_stream.txt Each line of this file is a number, corresponding to the ID of a word
in the stream.

2. counts.txt Each line is a pair of numbers separated by a tab. The first number is
an ID of a word and the second number is its associated exact frequency count in the
stream.

3. words_stream_tiny.txt and counts_tiny.txt are smaller versions of the dataset
above that you can use for debugging your implementation.

4. hash params.txt Each line is a pair of numbers separated by a tab, corresponding
to parameters a and b which you may use to define your own hash functions (See
explanation below).

Instructions. Implement the algorithm and run it on the dataset with parameters ¢ =
e, e = e x 107 (Note: with this choice of § you will be using 5 hash functions - the 5
pairs (a, b) that youll need for the hash functions are in hash params.txt). Then for each

distinct word ¢ in the dataset, compute the relative error F,.[i] = F[z},;[fm and plot these
values as a function of the exact word frequency FTM (You do not have to implement

the algorithm in Spark.)

The plot should use a logarithm scale both for the z and the y axes, and there should be
ticks to allow reading the powers of 10 (e.g. 1071, 10°, 10" etc...). The plot should have a
title, as well as the = and y axes. The exact frequencies F'[i] should be read from the counts
file. Note that words of low frequency can have a very large relative error. That is not a bug
in your implementation, but just a consequence of the bound we proved in question (a).

Answer the following question by reading values from your plot: What is an approximate
condition on a word frequency in the document to have a relative error below 1 = 10° ?

Hash functions. You may use the following hash function (see example pseudo-code),
with p = 123457, a and b values provided in the hash params file and n_buckets (which is
equivalent to (ﬂ) chosen according to the specification of the algorithm. In the provided

file, each line gives you a, b values to create one hash function.

# Returns hash(x) for hash function given by parameters a, b, p and n_buckets
def hash_fun(a, b, p, n_buckets, x)

{

y = x [modulo] p

hash_val = (a*y + b) [modulo] p

return hash_val [modulo] n_buckets

}
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Note: This hash function implementation produces outputs of value from 0 to (n_buckets —
1), which is different from our specification in the Strategy part. You can either keep the
range as {0,...,n_buckets — 1}, or add 1 to the hash result so the value range becomes
{1,...,n_buckets}, as long as you stay consistent within your implementation.

What to submit

(i) Proof that Pr |F[i] < FIi] —i—et] >1 4. [part (a)]

(ii) Log-log plot of the relative error as a function of the frequency. Answer for which word
frequencies is the relative error below 1. [part (b)]

(iii) Submit the code on Gradescope submission site. [part (b)]
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